Magnéli phases TinO2n-1 have been demonstrated as promising environmentally friendly materials in advanced oxidation processes.In this study,Magnéli phases TinO2n-1 have been used as catalysts for the ozonat...Magnéli phases TinO2n-1 have been demonstrated as promising environmentally friendly materials in advanced oxidation processes.In this study,Magnéli phases TinO2n-1 have been used as catalysts for the ozonation of phenol in aqueous solution for the first time.The materials exhibited excellent catalytic ozonation activities both in phenol degradation and mineralization.When Ti4O7was added,the reaction rate was six-fold higher than that of with ozone alone,while the total organic carbon removal rate was substantially elevated from around 19.2%to 92%.By virtue of the good chemical stability of the materials,a low metal leaching of less than 0.15 mg·L^-1could effectively avoid the secondary pollution by metal ions.Radical quenching tests revealed·O2^-and ^1O2to be active oxygen species for phenol degradation at p H 5.As semiconductor catalysts,TinO2n-1 materials show electronic transfer capability.Ozone adsorbed at B-acid sites of the catalyst surface can capture an electron from the conversion of Ti(Ⅲ)to Ti(Ⅳ),and is thereby broken into the active oxygen species.It was interesting to observe that TinO2n-1 exhibit better catalytic activity for phenol degradation and mineralization with lower n value.The difference in electrical conductivity can be considered as a major factor for the catalytic performances.More highly conductive catalysts show a faster electron-transfer rate and better catalytic activity.Thus,significant evidences have been obtained for a single-electron-transfer mechanism of catalytic ozonation with Magnéli phases TinO2n-1.展开更多
Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-...Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.展开更多
基金Supported by the National Natural Science Foundation of China(21676139)the Higher Education Natural Science Foundation of Jiangsu Province(15KJA530001)+1 种基金the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Research Fund of State Key Laboratory of MaterialsOriented Chemical Engineering(ZK201604)
文摘Magnéli phases TinO2n-1 have been demonstrated as promising environmentally friendly materials in advanced oxidation processes.In this study,Magnéli phases TinO2n-1 have been used as catalysts for the ozonation of phenol in aqueous solution for the first time.The materials exhibited excellent catalytic ozonation activities both in phenol degradation and mineralization.When Ti4O7was added,the reaction rate was six-fold higher than that of with ozone alone,while the total organic carbon removal rate was substantially elevated from around 19.2%to 92%.By virtue of the good chemical stability of the materials,a low metal leaching of less than 0.15 mg·L^-1could effectively avoid the secondary pollution by metal ions.Radical quenching tests revealed·O2^-and ^1O2to be active oxygen species for phenol degradation at p H 5.As semiconductor catalysts,TinO2n-1 materials show electronic transfer capability.Ozone adsorbed at B-acid sites of the catalyst surface can capture an electron from the conversion of Ti(Ⅲ)to Ti(Ⅳ),and is thereby broken into the active oxygen species.It was interesting to observe that TinO2n-1 exhibit better catalytic activity for phenol degradation and mineralization with lower n value.The difference in electrical conductivity can be considered as a major factor for the catalytic performances.More highly conductive catalysts show a faster electron-transfer rate and better catalytic activity.Thus,significant evidences have been obtained for a single-electron-transfer mechanism of catalytic ozonation with Magnéli phases TinO2n-1.
基金Project(21406273)supported by the National Natural Science Foundation of China
文摘Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.