期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
ON LINEAR EXTENSION OF 1-LIPSCHITZ MAPPING FROM HILBERT SPACE INTO A NORMED SPACE 被引量:2
1
作者 王瑞东 《Acta Mathematica Scientia》 SCIE CSCD 2010年第1期161-165,共5页
In this article, we prove that an into 1-Lipschitz mapping from the unit sphere of a Hilbert space to the unit sphere of an arbitrary normed space, which under some conditions, can be extended to be a linear isometry ... In this article, we prove that an into 1-Lipschitz mapping from the unit sphere of a Hilbert space to the unit sphere of an arbitrary normed space, which under some conditions, can be extended to be a linear isometry on the whole space. 展开更多
关键词 isometric extension tingley problem Hilbert space
下载PDF
A Note on Linear Extension of Isometries Between the Unit Spheres in β-normed Spaces
2
作者 张子厚 《Northeastern Mathematical Journal》 CSCD 2008年第5期458-464,共7页
In this paper, we give four general results on linear extension of isometries between the unit spheres in β-normed spaces. These results improve the corresponding theorems in β-normed spaces.
关键词 isometric mapping β-normed space extension of isometry tingley problem
下载PDF
Extension of Isometries Between the Unit Spheres of Normed Space E and C(Ω) 被引量:18
3
作者 Xi Nian FANG Jian Hua WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第6期1819-1824,共6页
In this paper, we study the extension of isometries between the unit spheres of normed space E and C(Ω). We obtain that any surjective isometry between the unit spheres of normed space E and C(Ω) can be extended... In this paper, we study the extension of isometries between the unit spheres of normed space E and C(Ω). We obtain that any surjective isometry between the unit spheres of normed space E and C(Ω) can be extended to be a linear isometry on the whole space E and give an affirmative answer to the corresponding Tingley's problem (where Ω be a compact metric space). 展开更多
关键词 isometric mapping isometric extension tingleys problem
原文传递
Extension of Isometries on the Unit Sphere of L^p Spaces 被引量:3
4
作者 Dong Ni TAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第6期1197-1208,共12页
In this paper we study the isometric extension problem and show that every surjective isometry between the unit spheres of L^p(μ) (1 〈 p 〈∞, p ≠ 2) and a Banach space E can be extended to a linear isometry fr... In this paper we study the isometric extension problem and show that every surjective isometry between the unit spheres of L^p(μ) (1 〈 p 〈∞, p ≠ 2) and a Banach space E can be extended to a linear isometry from L^p(μ) onto E, which means that if the unit sphere of E is (metrically) isometric to the unit sphere of L^P(μ), then E is linearly isometric to L^p(μ). We also prove that every surjective 1-Lipschitz or anti-l-Lipschitz map between the unit spheres of L^p(μ1, H1) and L^p(μ2, H2) must be an isometry and can be extended to a linear isometry from L^p(μ2, H2) to L^p(μ2, H2), where H1 and H2 are Hilbert spaces. 展开更多
关键词 tingleys problem 1-Lipschitz anti-l-Lipschitz isometrY isometric extension
原文传递
A Remark on Extension of Into Isometries
5
作者 Rui Dong WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第1期203-208,共6页
In this paper, we prove that an into isometry form S(l(n)^∞) to S(E), which under some conditions, can be extended to be a linear isometry defined on the whole space. Therefore we improve the results of [Ding, ... In this paper, we prove that an into isometry form S(l(n)^∞) to S(E), which under some conditions, can be extended to be a linear isometry defined on the whole space. Therefore we improve the results of [Ding, G. G.: The isometric extension of an into mapping from the unit sphere S(l(2)^∞) to S(Lμ^1). Acta Mathematica Sinica, English Series, 22(6), 1721-1724 (2006)]. 展开更多
关键词 isometric extension tingleys problem l(n)^∞-space
原文传递
空间s_p(a,L^q)中单位球面上的等距算子延拓问题
6
作者 傅小红 《嘉应学院学报》 2019年第3期5-9,共5页
讨论了空间Sp(α,L^q)中单位球面上的等距算子延拓问题,得到了空间Sp(α,L^q)中单位球面上的Lamperti等距能延拓到整个Sp(α,L^q)上.
关键词 等距 Lamperti等距 tingley问题
下载PDF
Tingley's Problem on Symmetric Absolute Normalized Norms on R^2 被引量:5
7
作者 Ryotaro TANAKA 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第8期1324-1340,共17页
In this paper,we study Tingley's problem on symmetric absolute normalized norms on R^2.We construct new methods for Tingley's problem on two-dimensional spaces by using isosceles orthogonality,which does not make us... In this paper,we study Tingley's problem on symmetric absolute normalized norms on R^2.We construct new methods for Tingley's problem on two-dimensional spaces by using isosceles orthogonality,which does not make use of the notion of natural extension.Furthermore,using our methods,several sufficient conditions for Tingley's problem on symmetric absolute normalized norms on R2 are given.As applications,we present various new examples including the two-dimensional Lorentz sequence space d^(2)(ω,q) and its dual d^(2)(ω,q)*by simple arguments. 展开更多
关键词 tingleys problem isometric extension problem isosceles orthogonality symmetric absolute normalized norm
原文传递
空间L^p(Γ,Σ,μ)(1
8
作者 陈绍雄 黄中杰 《云南师范大学学报(自然科学版)》 2012年第2期8-15,共8页
文章得到以下结果(它改进了文献[16][18]中的一些结果):设E是一个赋范空间,V0是单位球面S(Lp(Γ,Σ,μ))到单位球面S(E)内的等距映射。如果V0满足下列两个条件:(ⅰ)对于任意的自然数n,实数ξk∈[-1,1]及χAk∈χ(Γ),1≤k≤n,有‖sum fr... 文章得到以下结果(它改进了文献[16][18]中的一些结果):设E是一个赋范空间,V0是单位球面S(Lp(Γ,Σ,μ))到单位球面S(E)内的等距映射。如果V0满足下列两个条件:(ⅰ)对于任意的自然数n,实数ξk∈[-1,1]及χAk∈χ(Γ),1≤k≤n,有‖sum from k=1 to n ξkμ(Ai)1/pV0〔(χAi)/(μ(Ai)1/p)〕‖p=sum from k=1 to n|ξk|pμ(Ai),(ⅱ)对于任意的f1,f2∈S(Lp(Γ,Σ,μ))和实数ξ1,ξ2∈[-1,1],有‖ξ1V0(f1)+ξ2V0(f2)‖=1|ξ1V0(f1)+ξ2V0(f2)∈V0[S(Lp(Γ,Σ,μ)],那么V0可延拓为全空间Lp(Γ,Σ,μ)上的等距线性算子。 展开更多
关键词 tingley问题 等距延拓 等距映射
下载PDF
严格凸、光滑、自反的Banach空间中等距映射的线性延拓 被引量:1
9
作者 伊继金 王瑞东 《数学的实践与认识》 CSCD 北大核心 2010年第2期171-176,共6页
本文主要研究了任意两个严格凸,光滑的自反空间E,F的单位球面S(E)和S(F)之间任意等距映射的线性延拓问题.
关键词 等距映射 等距延拓 tingley问题
原文传递
空间l^p(Γ)(1 被引量:1
10
作者 蒋艳 陈绍雄 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第4期687-696,共10页
研究了空间l^p(Γ)(1<p<∞)与Banach空间E的单位球面之间的非满等距映射V_O的延拓问题.我们得到,满足一定条件的V_O可线性等距延拓到全空间L^p上.
关键词 tingley问题 等距延拓 等距映射
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部