A commercial N-S solver has been employed for simulation and investigation ofthe unsteady flow field inside the tip clearance of a turbine rotor. The main objective of thispaper is to introduce a new method of energy ...A commercial N-S solver has been employed for simulation and investigation ofthe unsteady flow field inside the tip clearance of a turbine rotor. The main objective of thispaper is to introduce a new method of energy loss calculation for the flow field in tip clearanceregion of a turbine rotor blade. This method can be easily used in all kinds of flow fields. Regionsof high viscous effects have been found to be located near the shroud rather than the blade tip. Itis shown that the time-averaged loss of energy in tip leakage flow is dissimilar for differentrotor blades. This result is a helpful hint that can be taken by blade designers to designnon-uniform rotor blades with different geometric and aerodynamic loads to minimize the energy loss.展开更多
This article describes the effects of some factors on the tip clearance flow in axial linear turbine cascades. The measurements of the total pressure loss coefficient are made at the cascade outlets by using a five-ho...This article describes the effects of some factors on the tip clearance flow in axial linear turbine cascades. The measurements of the total pressure loss coefficient are made at the cascade outlets by using a five-hole probe at exit Mach numbers of 0.10, 0.14 and 0.19. At each exit Mach number, experiments are performed at the tip clearance heights of 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of the blade height. The effects of the non-uniform tip clearance height of each blade in the pitchwise direction are also studied. The results show that at a given tip clearance height, generally, total pressure loss rises with exit Mach numbers proportionally. At a fixed exit Mach number, the total pressure loss augments nearly proportionally as the tip clearance height increases. The increased tip clearance heights in the tip regions of two adjacent blades are to be blame for the larger clearance loss of the center blade. Compared to the effects of the tip clearance height, the effects of the exit Mach number and the pitchwise variation of the tip clearance height on the cascade total pressure loss are so less significant to be omitted.展开更多
The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to opti...The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery.展开更多
文摘A commercial N-S solver has been employed for simulation and investigation ofthe unsteady flow field inside the tip clearance of a turbine rotor. The main objective of thispaper is to introduce a new method of energy loss calculation for the flow field in tip clearanceregion of a turbine rotor blade. This method can be easily used in all kinds of flow fields. Regionsof high viscous effects have been found to be located near the shroud rather than the blade tip. Itis shown that the time-averaged loss of energy in tip leakage flow is dissimilar for differentrotor blades. This result is a helpful hint that can be taken by blade designers to designnon-uniform rotor blades with different geometric and aerodynamic loads to minimize the energy loss.
基金National Natural Science Foundation of China (10377011)
文摘This article describes the effects of some factors on the tip clearance flow in axial linear turbine cascades. The measurements of the total pressure loss coefficient are made at the cascade outlets by using a five-hole probe at exit Mach numbers of 0.10, 0.14 and 0.19. At each exit Mach number, experiments are performed at the tip clearance heights of 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of the blade height. The effects of the non-uniform tip clearance height of each blade in the pitchwise direction are also studied. The results show that at a given tip clearance height, generally, total pressure loss rises with exit Mach numbers proportionally. At a fixed exit Mach number, the total pressure loss augments nearly proportionally as the tip clearance height increases. The increased tip clearance heights in the tip regions of two adjacent blades are to be blame for the larger clearance loss of the center blade. Compared to the effects of the tip clearance height, the effects of the exit Mach number and the pitchwise variation of the tip clearance height on the cascade total pressure loss are so less significant to be omitted.
基金supported by National Natural Science Foundation of China (Grant No. 50776021)Doctoral Fund of Ministry of Education of China (Grant No. 20092304110004)
文摘The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery.