Nanotechnology has taken a firm step to revolutionize the field of orthopedic implants. Current research on bone implants focuses to develop implants with multifaceted functions viz., osteoinduction, chemoprevention, ...Nanotechnology has taken a firm step to revolutionize the field of orthopedic implants. Current research on bone implants focuses to develop implants with multifaceted functions viz., osteoinduction, chemoprevention, antimicrobial action etc., especially for cancerous bone resection. The objective of the present study was to synthesize a novel composite for bone implants, possessing the above properties. Selenium was selected owing to its chemopreventive and chemotherapeutic properties. Hydroxyapatite was selected owing to its bioactivity and similarity in composition to bone mineral properties. Selenium nanoparticles were prepared by chemical reduction method and coated with hydroxyapatite.Hydroxyapatite-coated selenium nanoparticle(HASnp) was characterized physico-chemically using fourier transform infrared spectroscopy, X-ray diffractometry, scanning electron microscope, and energy-dispersive X-ray spectroscopy.HASnp was analysed in vitro using SaOS-2 cell line. Enhanced cell proliferation and alkaline phosphatase activity were observed in HASnp-treated cells. The results indicate that HASnp is highly suitable for the use in orthopedic applications.展开更多
基金The award of CSIR fellowship to T.Hemalathaand B.Santhosh Kumar is gratefully acknowledged
文摘Nanotechnology has taken a firm step to revolutionize the field of orthopedic implants. Current research on bone implants focuses to develop implants with multifaceted functions viz., osteoinduction, chemoprevention, antimicrobial action etc., especially for cancerous bone resection. The objective of the present study was to synthesize a novel composite for bone implants, possessing the above properties. Selenium was selected owing to its chemopreventive and chemotherapeutic properties. Hydroxyapatite was selected owing to its bioactivity and similarity in composition to bone mineral properties. Selenium nanoparticles were prepared by chemical reduction method and coated with hydroxyapatite.Hydroxyapatite-coated selenium nanoparticle(HASnp) was characterized physico-chemically using fourier transform infrared spectroscopy, X-ray diffractometry, scanning electron microscope, and energy-dispersive X-ray spectroscopy.HASnp was analysed in vitro using SaOS-2 cell line. Enhanced cell proliferation and alkaline phosphatase activity were observed in HASnp-treated cells. The results indicate that HASnp is highly suitable for the use in orthopedic applications.