The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basi...The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basis for accelerating articular cartilage repairing using molecular tissue engineering technology. TGF β 1 gene at different doses was transduced into the rat bone marrow derived MSCs to examine the effects of TGF β 1 gene transfection on MSCs DNA synthesis, cell cycle kinetics and the expression of proliferating cell nuclear antigen (PCNA). The results showed that 3 μl lipofectamine mediated 1 μg TGF β 1 gene transfection could effectively promote the proliferation of MSCs best; Under this condition (DNA/Lipofectamine=1μg/3μl), flow cytometry and immunohistochemical analyses revealed a significant increase in the 3 H incorporation, DNA content in S phase and the expression of PCNA. Transfection of gene encoding TGF β 1 could induce the cells at G0/G1 phase to S1 phase, modulate the replication of DNA through the enhancement of the PCNA expression, increase the content of DNA at S1 phase and promote the proliferation of MSCs. This new molecular tissue engineering approach could be of potential benefit to enhance the repair of damaged articular cartilage, especially those caused by degenerative joint diseases.展开更多
BACKGROUND Hemophilia, an uncommon yet consequential hereditary bleeding disorder, manifests as two clinically indistinguishable forms that hinder the normal functioning of the coagulation cascade. This impairment ren...BACKGROUND Hemophilia, an uncommon yet consequential hereditary bleeding disorder, manifests as two clinically indistinguishable forms that hinder the normal functioning of the coagulation cascade. This impairment renders individuals more susceptible to excessive bleeding during significant surgical interventions. Moreover, individuals with severe hemophilia frequently encounter recurring hemarthrosis, resulting in progressive joint destruction and, subsequently, the need for hip and knee replacement surgeries.CASE SUMMARY The patient was a 53-year-old man with hemophilia A as the underlying disease and had self-injected factor Ⅷ twice weekly for several decades. He had undergone ankle fusion surgery for recurrent hemarthrosis at the Department of Orthopedic Surgery 1 mo prior and was referred to our department because of skin necrosis after a hematoma at the surgical site. An anterolateral thigh perforator free flap was created after three cycles of factor Ⅷ administration in addition to the concomitant administration of tranexamic acid(TXA)(Transamin 250 mg cap, 1 cap tid, q8h). After the operation, from postoperative days(PODs) 1-5, the factor Ⅷ dose and interval were maintained, and q12h administration was tapered to q24h administration after POD 6. Because the patient’s flap was stable 12 d after the operation, factor Ⅷ administration was tapered to twice a week. At 6 mo follow-up, the patient recovered well without any complications.CONCLUSION To the best of our knowledge, there are very few reports of successful free flaps in patients with hemophilia, and none have been reported in patients with hemophilia A. Moreover, there are several reports on the efficacy of TXA in free flaps in general patients;however, there are no case reports of combining factor Ⅷ and TXA in patients with hemophilia. Therefore, we report this case to contribute to future academic research.展开更多
The feasibility of using gene therapy to treat full-thickness articular cartilage defects was investigated with respect to the transfection and expression of exogenous transforming growth factor(TGF)-β_(1)genes in bo...The feasibility of using gene therapy to treat full-thickness articular cartilage defects was investigated with respect to the transfection and expression of exogenous transforming growth factor(TGF)-β_(1)genes in bone marrow-derived mesenchymal stem cells(MSCs)in vitro.The full-length rat TGF-β_(1)cDNA was transfected to MSCs mediated by lipofectamine and then selected with G418,a synthetic neomycin analog.The transient and stable expression of TGF-β_(1)by MSCs was detected by using immunohistochemical staining.The lipofectamine-mediated gene therapy efficiently transfected MSCs in vitro with the TGF-β_(1)gene causing a marked up-regulation in TGF-β_(1)expression as compared with the vector-transfected control groups,and the increased expression persisted for at least 4 weeks after selected with G418.It was suggested that bone marrow-derived MSCs were susceptible to in vitro lipofectamine mediated TGF-β_(1)gene transfer and that transgene expression persisted for at least 4 weeks.Having successfully combined the existing techniques of tissue engineering with the novel possibilities offered by modern gene transfer technology,an innovative concept,i.e.molecular tissue engineering,are put forward for the first time.As a new branch of tissue engineering,it represents both a new area and an important trend in research.Using this technique,we have a new powerful tool with which:(1)to modify the functional biology of articular tissue repair along defined pathways of growth and differentiation and(2)to affect a better repair of full-thickness articular cartilage defects that occur as a result of injury and osteoarthritis.展开更多
Thermal damage of malignant tissue is generally determined not only by the characteristics of bio-tissues and nanoparticles but also the nanofluid concentration distributions due to different injection methods during ...Thermal damage of malignant tissue is generally determined not only by the characteristics of bio-tissues and nanoparticles but also the nanofluid concentration distributions due to different injection methods during magnetic hyperthermia.The latter has more advantages in improving the therapeutic effect with respect to the former since it is a determining factor for the uniformity of nanofluid concentration distribution inside the tumor region.This study investigates the effect of bio-tissue deformation due to intratumoral injection on the thermal damage behavior and treatment temperature distribution during magnetic hyperthermia,in which both the bio-tissue deformation due to nanofluid injection and the mass diffusion after injection behavior are taken into consideration.The nanofluid flow behavior is illustrated by two different theoretical models in this study,which are Navier–Stokes equation inside syringe needle and modified Darcy’s law inside bio-tissue.The diffusion behavior after nanofluid injection is expressed by a modified convection–diffusion equation.A proposed three-dimensional liver model based on the angiographic data is set to be the research object in this study,in which all bio-tissues are assumed to be deformable porous media.Simulation results demonstrate that the injection point for syringe needle can generally achieve the maximum value in the tissue pressure,deformation degree,and interstitial flow velocity during the injection process,all of which then drop sharply with the distance away from the injection center.In addition to the bio-tissue deformation due to injection behavior,the treatment temperature is also highly relevant to determine both the diffusion duration and blood perfusion rate due to the thermal damage during the therapy.展开更多
Advances in laser, microwave and similar technologies have led to recent developments of thermal treatments involving skin tissue. The effectiveness of these treatments is governed by the coupled thermal, mechanical, ...Advances in laser, microwave and similar technologies have led to recent developments of thermal treatments involving skin tissue. The effectiveness of these treatments is governed by the coupled thermal, mechanical, biological and neural responses of the affected tissue: a favorable interaction results in a procedure with relatively little pain and no lasting side effects. Currently, even though each behavioral facet is to a certain extent established and understood, none exists to date in the interdisciplinary area. A highly interdisciplinary approach is required for studying the biothermomechanical behavior of skin, involving bioheat transfer, biomechanics and physiology. A comprehensive literature review pertinent to the subject is presented in this paper, covering four subject areas: (a) skin structure, (b) skin bioheat transfer and thermal damage, (c) skin biomechanics, and (d) skin biothermomechanics. The major problems, issues, and topics for further studies are also outlined. This review finds that significant advances in each of these aspects have been achieved in recent years. Although focus is placed upon the biothermomechanical behavior of skin tissue, the fundamental concepts and methodologies reviewed in this paper may also be applicable for studying other soft tissues.展开更多
Traditional moxibustion therapy can stimulate heat and blood-vessel expansion and advance blood circulation.In the present study,a novel noncontact-type thermal therapeutic system was developed using a near-infrared l...Traditional moxibustion therapy can stimulate heat and blood-vessel expansion and advance blood circulation.In the present study,a novel noncontact-type thermal therapeutic system was developed using a near-infrared laser diode.The device allows direct interaction of infrared laser light with the skin,thereby facilitating a controlled temperature distribution on the skin and the deep tissues below the skin.While using a tissue-mimicking phantom as a substitute for real skin,the most important optical and thermal parameters are the absorption/attenuation coefficient,thermal conductivity,and specic heat.We found that these parameters can be manipulated by varying the agar-gel concentration.Hence,a multilayer tissue-mimicking phantom was fabricated using different agar-gel concentrations.Thermal imaging and thermocouples were used to measure the temperature distribution inside the phantom during laser irradiation.The temperature increased with the increase in the agar-gel concentration and reached a maximum value under the tissue phantom surface.To induce a similar thermal effect of moxibustion therapy,controlled laser-irradiation parameters such as output power,wavelength and pulse width were obtained from further analysis of the temperature distribution.From the known optothermal properties of the patient's skin,the temperature distribution inside the tissue was manipulated by optimizing the laser parameters.This study can contribute to patient-specic thermal therapy in clinics.展开更多
Understanding of the heat transport within living biological tissues is crucial to effective heat treatments. The heat transport properties of living biological tissues with temperature-dependent properties are explor...Understanding of the heat transport within living biological tissues is crucial to effective heat treatments. The heat transport properties of living biological tissues with temperature-dependent properties are explored in this paper. Taking into account of variable physical properties, the governing equation of temperature is first derived in the context of the dualphase-lags model(DPL). An effective method, according to the Laplace transform and a linearization technique, is then employed to solve this nonlinear governing equation. The temperature distribution of a biological tissue exposed to a pulsed heat flux on its exterior boundary, which frequently happens in various heat treatments, is predicted and analyzed. The results state that a lower temperature can be predicted when temperature dependence is considered in the heating process.The contributions of key thermal parameters are different and dependent on the ratio of phase lag and the amplitude of the exterior pulsed heat flux.展开更多
Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-b...Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-based human-machine interfaces have achieved promising results in promoting neurological recovery by controlling a distal exoskeleton to perform functional limb exercises early after nerve injury,which maintains target muscle activity and promotes the neurological rehabilitation effect.This review summarizes the progress of research in EEG-based human-machine interface combined with contralateral C7 transfer repair of brachial plexus nerve injury.Nerve transfer may result in loss of nerve function in the donor area,so only nerves with minimal impact on the donor area,such as the C7 nerve,should be selected as the donor.Single tendon transfer does not fully restore optimal joint function,so multiple functions often need to be reestablished simultaneously.Compared with traditional manual rehabilitation,EEG-based human-machine interfaces have the potential to maximize patient initiative and promote nerve regeneration and cortical remodeling,which facilitates neurological recovery.In the early stages of brachial plexus injury treatment,the use of an EEG-based human-machine interface combined with contralateral C7 transfer can facilitate postoperative neurological recovery by making full use of the brain’s computational capabilities and actively controlling functional exercise with the aid of external machinery.It can also prevent disuse atrophy of muscles and target organs and maintain neuromuscular junction effectiveness.Promoting cortical remodeling is also particularly important for neurological recovery after contralateral C7 transfer.Future studies are needed to investigate the mechanism by which early movement delays neuromuscular junction damage and promotes cortical remodeling.Understanding this mechanism should help guide the development of neurological rehabilitation strategies for patients with brachial plexus injury.展开更多
简述了植物组织培养方法与离子束辐射相结合这一新诱变技术的研究进展,从原理、操作步骤、分子机理等诸方面对该方法进行了阐释。该诱变技术具备传统辐射诱变技术所不具备的优势,从而能够为利用无性繁殖技术进行后代繁衍的植物提供新的...简述了植物组织培养方法与离子束辐射相结合这一新诱变技术的研究进展,从原理、操作步骤、分子机理等诸方面对该方法进行了阐释。该诱变技术具备传统辐射诱变技术所不具备的优势,从而能够为利用无性繁殖技术进行后代繁衍的植物提供新的育种思路。与此同时,使用该方法还能够开展植物组织细胞的传能线密度(Linear energy transfer,LET)生物学效应的研究,从理论上及实践上进一步优化该技术。展开更多
提出一种人体植入式医学装置电能传输新方法,该方法以人体组织作为耦合介质,通过体内、外耦合极板构建耦合电容,以耦合电场实现电能的无线传输。分析了人体组织的电学特性,设计了电能传输系统,并通过实验验证了该方法的可行性。实验中,...提出一种人体植入式医学装置电能传输新方法,该方法以人体组织作为耦合介质,通过体内、外耦合极板构建耦合电容,以耦合电场实现电能的无线传输。分析了人体组织的电学特性,设计了电能传输系统,并通过实验验证了该方法的可行性。实验中,通过36 cm2的耦合面积,穿越2 cm厚度的生物组织,可传输100 m W的可用电能,传输效率为35%~40%。该电能传输方式具有无电涡流致热、电磁干扰小、易于与医学仪器集成的优点,是人体植入式医学装置无线电能供给的新思路。展开更多
基金This project was supported by a grant from NationalNatural Science Foundation of China (No. 30 170 2 70 )
文摘The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basis for accelerating articular cartilage repairing using molecular tissue engineering technology. TGF β 1 gene at different doses was transduced into the rat bone marrow derived MSCs to examine the effects of TGF β 1 gene transfection on MSCs DNA synthesis, cell cycle kinetics and the expression of proliferating cell nuclear antigen (PCNA). The results showed that 3 μl lipofectamine mediated 1 μg TGF β 1 gene transfection could effectively promote the proliferation of MSCs best; Under this condition (DNA/Lipofectamine=1μg/3μl), flow cytometry and immunohistochemical analyses revealed a significant increase in the 3 H incorporation, DNA content in S phase and the expression of PCNA. Transfection of gene encoding TGF β 1 could induce the cells at G0/G1 phase to S1 phase, modulate the replication of DNA through the enhancement of the PCNA expression, increase the content of DNA at S1 phase and promote the proliferation of MSCs. This new molecular tissue engineering approach could be of potential benefit to enhance the repair of damaged articular cartilage, especially those caused by degenerative joint diseases.
文摘BACKGROUND Hemophilia, an uncommon yet consequential hereditary bleeding disorder, manifests as two clinically indistinguishable forms that hinder the normal functioning of the coagulation cascade. This impairment renders individuals more susceptible to excessive bleeding during significant surgical interventions. Moreover, individuals with severe hemophilia frequently encounter recurring hemarthrosis, resulting in progressive joint destruction and, subsequently, the need for hip and knee replacement surgeries.CASE SUMMARY The patient was a 53-year-old man with hemophilia A as the underlying disease and had self-injected factor Ⅷ twice weekly for several decades. He had undergone ankle fusion surgery for recurrent hemarthrosis at the Department of Orthopedic Surgery 1 mo prior and was referred to our department because of skin necrosis after a hematoma at the surgical site. An anterolateral thigh perforator free flap was created after three cycles of factor Ⅷ administration in addition to the concomitant administration of tranexamic acid(TXA)(Transamin 250 mg cap, 1 cap tid, q8h). After the operation, from postoperative days(PODs) 1-5, the factor Ⅷ dose and interval were maintained, and q12h administration was tapered to q24h administration after POD 6. Because the patient’s flap was stable 12 d after the operation, factor Ⅷ administration was tapered to twice a week. At 6 mo follow-up, the patient recovered well without any complications.CONCLUSION To the best of our knowledge, there are very few reports of successful free flaps in patients with hemophilia, and none have been reported in patients with hemophilia A. Moreover, there are several reports on the efficacy of TXA in free flaps in general patients;however, there are no case reports of combining factor Ⅷ and TXA in patients with hemophilia. Therefore, we report this case to contribute to future academic research.
文摘The feasibility of using gene therapy to treat full-thickness articular cartilage defects was investigated with respect to the transfection and expression of exogenous transforming growth factor(TGF)-β_(1)genes in bone marrow-derived mesenchymal stem cells(MSCs)in vitro.The full-length rat TGF-β_(1)cDNA was transfected to MSCs mediated by lipofectamine and then selected with G418,a synthetic neomycin analog.The transient and stable expression of TGF-β_(1)by MSCs was detected by using immunohistochemical staining.The lipofectamine-mediated gene therapy efficiently transfected MSCs in vitro with the TGF-β_(1)gene causing a marked up-regulation in TGF-β_(1)expression as compared with the vector-transfected control groups,and the increased expression persisted for at least 4 weeks after selected with G418.It was suggested that bone marrow-derived MSCs were susceptible to in vitro lipofectamine mediated TGF-β_(1)gene transfer and that transgene expression persisted for at least 4 weeks.Having successfully combined the existing techniques of tissue engineering with the novel possibilities offered by modern gene transfer technology,an innovative concept,i.e.molecular tissue engineering,are put forward for the first time.As a new branch of tissue engineering,it represents both a new area and an important trend in research.Using this technique,we have a new powerful tool with which:(1)to modify the functional biology of articular tissue repair along defined pathways of growth and differentiation and(2)to affect a better repair of full-thickness articular cartilage defects that occur as a result of injury and osteoarthritis.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62071124)the Natural Science Foundation of Fujian Province,China (Grant No. 2020J01464)+1 种基金the Education Department of Fujian Province,China (Grant No. JAT190013)the Conselho Nacional de Desenvolvimento Cientificoe Tecnoloico (BR)(CNPq)(Grant No. 309244/2018-8)
文摘Thermal damage of malignant tissue is generally determined not only by the characteristics of bio-tissues and nanoparticles but also the nanofluid concentration distributions due to different injection methods during magnetic hyperthermia.The latter has more advantages in improving the therapeutic effect with respect to the former since it is a determining factor for the uniformity of nanofluid concentration distribution inside the tumor region.This study investigates the effect of bio-tissue deformation due to intratumoral injection on the thermal damage behavior and treatment temperature distribution during magnetic hyperthermia,in which both the bio-tissue deformation due to nanofluid injection and the mass diffusion after injection behavior are taken into consideration.The nanofluid flow behavior is illustrated by two different theoretical models in this study,which are Navier–Stokes equation inside syringe needle and modified Darcy’s law inside bio-tissue.The diffusion behavior after nanofluid injection is expressed by a modified convection–diffusion equation.A proposed three-dimensional liver model based on the angiographic data is set to be the research object in this study,in which all bio-tissues are assumed to be deformable porous media.Simulation results demonstrate that the injection point for syringe needle can generally achieve the maximum value in the tissue pressure,deformation degree,and interstitial flow velocity during the injection process,all of which then drop sharply with the distance away from the injection center.In addition to the bio-tissue deformation due to injection behavior,the treatment temperature is also highly relevant to determine both the diffusion duration and blood perfusion rate due to the thermal damage during the therapy.
基金the Overseas Research Studentship (ORS)Overseas Trust Scholarship of Cambridge Universitythe National Natural Science Foundation of China (10572111,10632060)+1 种基金National 111 Project of China (B06024)the National Basic Research Program of China (2006CB601202)
文摘Advances in laser, microwave and similar technologies have led to recent developments of thermal treatments involving skin tissue. The effectiveness of these treatments is governed by the coupled thermal, mechanical, biological and neural responses of the affected tissue: a favorable interaction results in a procedure with relatively little pain and no lasting side effects. Currently, even though each behavioral facet is to a certain extent established and understood, none exists to date in the interdisciplinary area. A highly interdisciplinary approach is required for studying the biothermomechanical behavior of skin, involving bioheat transfer, biomechanics and physiology. A comprehensive literature review pertinent to the subject is presented in this paper, covering four subject areas: (a) skin structure, (b) skin bioheat transfer and thermal damage, (c) skin biomechanics, and (d) skin biothermomechanics. The major problems, issues, and topics for further studies are also outlined. This review finds that significant advances in each of these aspects have been achieved in recent years. Although focus is placed upon the biothermomechanical behavior of skin tissue, the fundamental concepts and methodologies reviewed in this paper may also be applicable for studying other soft tissues.
基金the National Research Foundation sponsored by the Ministry of Science,ICT and Future Planning(NRF-2016R1A2B4012095)the Ministry of Education(NRF-2016R1D1A1A09917195),Republic of Korea.
文摘Traditional moxibustion therapy can stimulate heat and blood-vessel expansion and advance blood circulation.In the present study,a novel noncontact-type thermal therapeutic system was developed using a near-infrared laser diode.The device allows direct interaction of infrared laser light with the skin,thereby facilitating a controlled temperature distribution on the skin and the deep tissues below the skin.While using a tissue-mimicking phantom as a substitute for real skin,the most important optical and thermal parameters are the absorption/attenuation coefficient,thermal conductivity,and specic heat.We found that these parameters can be manipulated by varying the agar-gel concentration.Hence,a multilayer tissue-mimicking phantom was fabricated using different agar-gel concentrations.Thermal imaging and thermocouples were used to measure the temperature distribution inside the phantom during laser irradiation.The temperature increased with the increase in the agar-gel concentration and reached a maximum value under the tissue phantom surface.To induce a similar thermal effect of moxibustion therapy,controlled laser-irradiation parameters such as output power,wavelength and pulse width were obtained from further analysis of the temperature distribution.From the known optothermal properties of the patient's skin,the temperature distribution inside the tissue was manipulated by optimizing the laser parameters.This study can contribute to patient-specic thermal therapy in clinics.
基金Project supported by the National Science Foundation of China (Grant Nos.51676086 and 51575247)。
文摘Understanding of the heat transport within living biological tissues is crucial to effective heat treatments. The heat transport properties of living biological tissues with temperature-dependent properties are explored in this paper. Taking into account of variable physical properties, the governing equation of temperature is first derived in the context of the dualphase-lags model(DPL). An effective method, according to the Laplace transform and a linearization technique, is then employed to solve this nonlinear governing equation. The temperature distribution of a biological tissue exposed to a pulsed heat flux on its exterior boundary, which frequently happens in various heat treatments, is predicted and analyzed. The results state that a lower temperature can be predicted when temperature dependence is considered in the heating process.The contributions of key thermal parameters are different and dependent on the ratio of phase lag and the amplitude of the exterior pulsed heat flux.
基金supported by the National Natural Science Foundation of China, No.31771322(to PXZ)the Natural Science Foundation of Beijing, No.7212121(to PXZ)+2 种基金Shenzhen Science and Technology Plan Project, No.JCYJ20190806162205278(to PXZ)Funds for Severe Trauma Standardized Treatment, No.SZSM202011001(to PXZ)a grant from National Center for Trauma Medicine, Beijing, China, No.BMU2020 XY005-01(to PXZ)
文摘Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-based human-machine interfaces have achieved promising results in promoting neurological recovery by controlling a distal exoskeleton to perform functional limb exercises early after nerve injury,which maintains target muscle activity and promotes the neurological rehabilitation effect.This review summarizes the progress of research in EEG-based human-machine interface combined with contralateral C7 transfer repair of brachial plexus nerve injury.Nerve transfer may result in loss of nerve function in the donor area,so only nerves with minimal impact on the donor area,such as the C7 nerve,should be selected as the donor.Single tendon transfer does not fully restore optimal joint function,so multiple functions often need to be reestablished simultaneously.Compared with traditional manual rehabilitation,EEG-based human-machine interfaces have the potential to maximize patient initiative and promote nerve regeneration and cortical remodeling,which facilitates neurological recovery.In the early stages of brachial plexus injury treatment,the use of an EEG-based human-machine interface combined with contralateral C7 transfer can facilitate postoperative neurological recovery by making full use of the brain’s computational capabilities and actively controlling functional exercise with the aid of external machinery.It can also prevent disuse atrophy of muscles and target organs and maintain neuromuscular junction effectiveness.Promoting cortical remodeling is also particularly important for neurological recovery after contralateral C7 transfer.Future studies are needed to investigate the mechanism by which early movement delays neuromuscular junction damage and promotes cortical remodeling.Understanding this mechanism should help guide the development of neurological rehabilitation strategies for patients with brachial plexus injury.
文摘简述了植物组织培养方法与离子束辐射相结合这一新诱变技术的研究进展,从原理、操作步骤、分子机理等诸方面对该方法进行了阐释。该诱变技术具备传统辐射诱变技术所不具备的优势,从而能够为利用无性繁殖技术进行后代繁衍的植物提供新的育种思路。与此同时,使用该方法还能够开展植物组织细胞的传能线密度(Linear energy transfer,LET)生物学效应的研究,从理论上及实践上进一步优化该技术。
文摘提出一种人体植入式医学装置电能传输新方法,该方法以人体组织作为耦合介质,通过体内、外耦合极板构建耦合电容,以耦合电场实现电能的无线传输。分析了人体组织的电学特性,设计了电能传输系统,并通过实验验证了该方法的可行性。实验中,通过36 cm2的耦合面积,穿越2 cm厚度的生物组织,可传输100 m W的可用电能,传输效率为35%~40%。该电能传输方式具有无电涡流致热、电磁干扰小、易于与医学仪器集成的优点,是人体植入式医学装置无线电能供给的新思路。