The use of titanium dioxide nanoparticles (nTiO<sub>2</sub>) is gaining interest in agriculture because of their impact on many aspects of plant growth. The present study examines the effects of nTiO<su...The use of titanium dioxide nanoparticles (nTiO<sub>2</sub>) is gaining interest in agriculture because of their impact on many aspects of plant growth. The present study examines the effects of nTiO<sub>2</sub> (5 nm and 10 nm) applied to seeds and the seedlings as a foliar application on various aspects of growth characteristics and biomass accumulation in lettuce (Lactuca sativa, cv. Grand Rapids). Application of 10 nm nTiO<sub>2</sub> to seeds through imbibition resulted in a significant reduction in shoot biomass accumulation while 5 nm nTiO<sub>2</sub> did not affect the biomass accumulation in lettuce. The application of 10 nm nTiO<sub>2</sub> reduced the fresh shoot biomass accumulation by about 18% compared to the control plants. Other growth characteristics such as shoot dry biomass, root fresh and dry biomass, plant height, and leaf area were not affected by the application of both 5 nm and 10 nm nTiO<sub>2</sub>. In addition, foliar application of these nanoparticles to the lettuce seedlings did not have a significant effect on most of the growth parameters examined, and the increasing concentration ranging from 5 nm/L to 400 mg/L did not produce a consistent response in lettuce. Thus, nTiO<sub>2</sub> application to lettuce seeds had a notable negative impact on shoot growth while foliar application did not have a significant effect on many plant growth characteristics. However, foliar applications produced some symptoms of toxicity to the foliage in the form of necrotic or chlorotic patches on the leaves, which were more pronounced with increasing concentrations of both 5 nm and 10 nm nTiO<sub>2</sub>. However, these symptoms were apparent at a concentration as low as 50 mg/L of nTiO<sub>2</sub>. Thus, foliar application of nTiO<sub>2</sub> may not have a significant impact on many of the growth characteristics in lettuce, but it can result in foliar toxicity.展开更多
To meet the low-cost concept advocated by the sodium metal anode,this paper reports the use of a pulsed electrodeposition technology with ionic liquids as electrolytes to achieve uniform nanoplating of metallic magnes...To meet the low-cost concept advocated by the sodium metal anode,this paper reports the use of a pulsed electrodeposition technology with ionic liquids as electrolytes to achieve uniform nanoplating of metallic magnesium films at around 20 nm on spaced titanium dioxide(TiO_(2))nanotubes(STNA-Mg).First,the sodiophilic magnesium metal coating can effectively reduce the nucleation overpotential of sodium metal.Moreover,three-dimensional STNA can limit the volume expansion during sodium metal plating and stripping to achieve the ultrastable deposition and stripping of sodium metals with a high Coulombic efficiency of up to 99.5%and a small voltage polarization of 5 mV in symmetric Na||Na batteries.In addition,the comparative study of sodium metal deposition behavior of STNA-Mg and STNA-Cu prepared by the same route further confirmed the advantage of magnesium metal to guide sodium metal growth.Finally,the prepared STNA-Mg-Na metal anode and commercial sodium vanadium phosphate cathode were assembled into a full cell,delivering a discharge capacity of 110.2 mAh·g^(-1)with a retention rate of 95.6%after 110 cycles at 1C rate.展开更多
Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions.Photocatalytic technology is a potential solution...Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions.Photocatalytic technology is a potential solution to convert N2 to ammonia.However,the poor light absorption and low charge carrier separation efficiency in conventional semiconductors are bottlenecks for the application of this technology.Herein,a facile synthesis of anatase TiO_(2)nanosheets with an abundance of surface oxygen vacancies(TiO_(2)-OV)via the calcination treatment was reported.Photocatalytic experiments of the prepared anatase TiO_(2)samples showed that TiO_(2)-OV nanosheets exhibited remarkably increased ammonia yield for solar-driven N2 fixation in pure water,without adding any sacrificial agents.EPR,XPS,XRD,UV-Vis DRS,TEM,Raman,and PL techniques were employed to systematically explore the possible enhanced mechanism.Studies revealed that the introduced surface oxygen vacancies significantly extended the light absorption capability in the visible region,decreased the adsorption and activation barriers of inert N2,and improved the separation and transfer efficiency of the photogenerated electronhole pairs.Thus,a high rate of ammonia evolution in TiO_(2)-OV was realized.This work offers a promising and sustainable approach for the efficient artificial photosynthesis of ammonia.展开更多
Ho^3+-doped titanium dioxide(TiO2:Ho^3+) downconversion(DC) nanowires were synthesized through a simple hydrothermal method followed by a subsequent calcination process after being immersed in Ho(NO3)3 aqueou...Ho^3+-doped titanium dioxide(TiO2:Ho^3+) downconversion(DC) nanowires were synthesized through a simple hydrothermal method followed by a subsequent calcination process after being immersed in Ho(NO3)3 aqueous solution. Moreover, TiO2:Ho^3+ nanowires(HTNWs) were used as the photoanode in dye-sensitized solar cells(DSSCs) to investigate their photoelectric properties. Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were used to characterize the morphology and structure of the material, respectively. The photofluorescence and ultraviolet-visible absorption spectra of HTNWs reveal a DC from the near and middle ultraviolet light to visible light which matches the strong absorbed region of the N719 dye. Compared with the pure TNW photoanode, HTNWs DC photoanodes show greater photovoltaic efficiency. The photovoltaic conversion efficiency(η) of the DSSCs with HTNWs photoanode doped with 4% Ho2O3(mass fraction) is two times that with pure TNW photoanode. This enhancement could be attributed to HTNWs which could extend the spectral response range of DSSCs to the near and middle ultraviolet region and increase the short-circuit current density(Jsc) of DSSCs, thus leading to the enhancement of photovoltaic conversion efficiency.展开更多
Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the mol...Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the molar ratio of Al2O3 to C was 1:4,and 10% TiO2 and excess AlCl3 were added.The results show that TiC is produced by C and TiO2 after TiO2 transforms from anatase into rutile gradually.In the temperature range of 1 763?1 783 K,the compounds of Ti and Al are not found in slags and condensate.The purity of aluminum reaches 98.35%,and TiO2 does not participate in alumina carbothermic reduction process and chlorination process in vacuum.展开更多
The adsorption potential of titanium dioxide (TiO2) nanoparticles for removing arsenic from drinking water was evaluated. Pure and iron-doped TiO2 particles are synthesized via sol-gel method. The synthesized TiO2 n...The adsorption potential of titanium dioxide (TiO2) nanoparticles for removing arsenic from drinking water was evaluated. Pure and iron-doped TiO2 particles are synthesized via sol-gel method. The synthesized TiO2 nanoparticles were then immobilized on ordinary sand for adsorption studies. Adsorption isotherms were conducted on the synthesized nanoparticles as well as the sand coated with TiO2 nanoparticles under varying conditions of air and light, namely, the air-sunlight (A-SL), air-light (AL), air-dark (AD) and nitrogen-dark (ND). X-ray diffraction (XRD) analysis showed that the pure and iron-doped TiO2 nanoparticles were in 100% anatase crystalline phase with crystai sizes of 108 and 65 nm, respectively. Adsorption of arsenic on the three adsorbents was non-linear that could be described by the Freundlich and Langmuir adsorption models. Iron doping enhanced the adsorption capacity of TiO2 nanoparticles by arresting the grain growth and making it visible light responsive resulting in a higher affinity for arsenic. Similarly, the arsenic removal by adsorption on the sand coated with TiO2 nanoparticles was the highest among the three types of sand used. In all cases, As(V) was adsorbed more compared with As(Ⅲ). The solution pH appeared to be the most important factor in controlling the amount of arsenic adsorbed.展开更多
A series of photocatalysts of un-doped, single-doped and co-doped nanometer titanium diox- ide (TiO2) have been successfully prepared by template method using Fe(NO3)3.9H2O, La(NO3)3.6H2O, and tetrabutyl titanat...A series of photocatalysts of un-doped, single-doped and co-doped nanometer titanium diox- ide (TiO2) have been successfully prepared by template method using Fe(NO3)3.9H2O, La(NO3)3.6H2O, and tetrabutyl titanate as precursors and glucan as template. Scanning electron microscopy, X-ray diffraction, and N2 adsorption-desorption measurement were employed to characterize the morphology, crystal structure and surface structure of the samples. The photo-absorbance of the obtained catalysts was measured by UV-Vis absorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl orange in an aqueous solution. The characterizations indicated that the prepared photocatalysts consisted of anatase phase and possessed high surface area of ca. 163-176 m2/g. It was shown that the Fe and La co-doped nano-TiO2 could be activated by visible light and could thus be used as an effective catalyst in photo-oxidation reactions. The synergistic effect of Fe and La co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of co-doped nano-TiO2 was also confirmed, the photocatalytic activity of codoped nano-TiO2 remained above 89.6% of the fresh sample after being used four times.展开更多
AIM: To investigate the impact of titanium dioxide nanoparticles(Ti O2NPs) on embryonic development and retinal neurogenesis.METHODS: The agglomeration and sedimentation of Ti O2 NPs solutions at different dilutions w...AIM: To investigate the impact of titanium dioxide nanoparticles(Ti O2NPs) on embryonic development and retinal neurogenesis.METHODS: The agglomeration and sedimentation of Ti O2 NPs solutions at different dilutions were observed,and the ultraviolet-visible spectra of their supernatants were measured. Zebrafish embryos were experimentally exposed to Ti O2 NPs until 72 h postfertilization(hpf). The retinal neurogenesis and distribution of the microglia were analyzed by immunohistochemistry and whole mount in situ hybridization.RESULTS: The 1 mg/L was determined to be an appropriate exposure dose. Embryos exposed to Ti O2 NPs had a normal phenotype. The neurogenesis was initiated on time, and ganglion cells, cones and rods were well differentiated at 72 hpf. The expression of fms m RNA and the 4C4 antibody, which were specific to microglia in the central nervous system(CNS), closely resembled their endogenous profile.CONCLUSION: These data demonstrate that short-term exposure to Ti O2 NPs at a low dose does not lead to delayed embryonic development or retinal neurotoxicity.展开更多
The sonocatalytic damage of bovine serum albumin (BSA) was studied in the presence of nanometer titanium dioxide (TiO2) powders by low frequency (80 kHz) ultrasound. The destruction of secondary structure and ch...The sonocatalytic damage of bovine serum albumin (BSA) was studied in the presence of nanometer titanium dioxide (TiO2) powders by low frequency (80 kHz) ultrasound. The destruction of secondary structure and change of α-helical structure of BSA were reflected by ultraviolet (UV) and circular dichroism (CD) spectroscopies.展开更多
Protein phosphorylation is an important post-translational modification that regulates milk protein structure and function.The objective of this study was to analyze the presence of phosphorylated casein.Bovine milk p...Protein phosphorylation is an important post-translational modification that regulates milk protein structure and function.The objective of this study was to analyze the presence of phosphorylated casein.Bovine milk proteins were first separated by SDS polyacrylamide gel electrophoresis.After in gels digestion and extraction,phosphorylated peptides were enriched by titanium dioxide and identified by ultra performance liquid chromatography coupled with nano electrospray ionization tandem mass spectrometry.This method ensured the identification of 20 phosphorylated peptides,including 7 phosphorylated forms of α_s1-casein,8 α_s2-casein,and 5 β-casein.Eight phosphorylated sites derived from 3 α_s1-caseins,3 α_s2-caseins,and 2 β-caseins were also identified,and localized on residues Ser^61,Ser^63 and Ser^130 in α_s1-casein;Thr^145,Ser^146 and Ser^158 in α_s2-casein;and Ser^50 and Thr^56 in β-casein.These findings provide valuable information for investigating casein phosphorylation of the bovine milk.展开更多
Titanium dioxide nanoparticles with an average diameter of about 10 nm are fabricated using a sintering method. The degradation of methyl orange indicates that the photocatalytic efficiency is greatly enhanced, which ...Titanium dioxide nanoparticles with an average diameter of about 10 nm are fabricated using a sintering method. The degradation of methyl orange indicates that the photocatalytic efficiency is greatly enhanced, which is measured to be 62.81%. Transmission electron microscopy is used to investigate the microstructure of TiO2 nanoparticles in order to correlate their photocatalytic properties. High-resolution transmission electron microscopy examinations show that all the nanoparticles belong to the anatase phase, and pure edge dislocations exist in some nanoparticles. The great enhancement of photocatalytic efficiency is attributed to two factors, the quantum size effect and the surface defects in the nanoparticles.展开更多
At present,a growing number of consumer products contain engineered nanoparticle TiO2(nano⁃TiO2),which has resulted in the consequences of nano⁃TiO2 entering the aquatic environment directly or indirectly at some stag...At present,a growing number of consumer products contain engineered nanoparticle TiO2(nano⁃TiO2),which has resulted in the consequences of nano⁃TiO2 entering the aquatic environment directly or indirectly at some stage.The fate of nano⁃TiO2 in the aquatic environment has become the key factor which affects its safety application and nanoecotoxicology.This paper aims to investigate how the dissolved organic matters(DOM),especially the molecular weight fractions in the aquatic environment,affect the aggregation,stability,and fate of nano⁃TiO2,and the interaction mechanism of DOM and nano⁃TiO2.Results of dynamic light scattering(DLS)showed that the molecular weight of DOM molecules caused different aggregation rates of nano⁃TiO2 in aqueous solution.Fourier Transform infrared spectroscopy(FTIR)results indicated the molecular structure is characteristics of DOM fractions and the mechanisms of bonds formation between DOM and nano⁃TiO2.Results of three⁃dimensional excitation⁃emission matrices(3D⁃EEM)confirmed the FTIR results and implied the increase of the stability of theπ-πconjugated system in the presence of DOM.In addition,low molecular weight of DOM fractions appeared to show more affinity with nano⁃TiO2 than high molecular weight fractions.展开更多
A simple and effective method of removing polluted organics in water is reported here.Titanium dioxide is a catalyst in photo-oxidation of monocrotophos.The mechanism of photocatalytic oxidation and the kinetics of th...A simple and effective method of removing polluted organics in water is reported here.Titanium dioxide is a catalyst in photo-oxidation of monocrotophos.The mechanism of photocatalytic oxidation and the kinetics of the reaction were studied. This same principle also leads to the construction of instrument of PTR-FIA analysis for monitoring organic phosphorus and phosphate in water.展开更多
In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs t...In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs to be better understood. Nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofluoric acid solution during 20 minutes and then annealed in air atmosphere. In-situ X-ray diffraction analysis, coupled with thermogravimetry, gives us an inside on the oxidation behaviour of titanium dioxide nanotube layers compared to bulk reference samples. Structural studies were performed at 700°C for 12 h in order to follow the time consequences on the oxidation of the material, in sufficient stability conditions. In-situ XRD brought to light that the amorphous oxide layer induced by anodization is responsible for the simultaneous growths of anatase and rutile phase during the first 30 minutes of annealing while the bulk sample oxidation leads to the nucleation of a small amount of anatase TiO<sub>2</sub>. The initial amorphous oxide layer created by anodization is also responsible for the delay in crystallization compared to the bulk sample. Thermogravimetric analysis exhibits parabolic shape of the mass gain for both anodized and bulk sample;this kinetics is caused by the formation of a rutile external protective layer, as depicted by the associated in-situ XRD diffractograms. We recorded that titanium dioxide nanotube layers exhibit a lower mean mass gain than the bulk, because of the presence of an initial amorphous oxide layer on anodized samples. In-situ XRD results also provide accurate information concerning the sub-layers behavior during the annealing treatment for the bulk and nanostructured layer. Anatase crystallites are mainly localized at the interface oxide layer-metal and the rutile is at the external interface. Sample surface topography was characterized using scanning electron microscopy (SEM). As a probe of the photoactivity of the annealed TiO<sub>2</sub> nanotube layers, degradation of an acid orange 7 (AO7) dye solution and 4-chlorophenol under UV irradiation (at 365 nm) were performed. Such titanium dioxide nanotube layers show an efficient photocatalytic activity and the analytical results confirm the degradation mechanism of the 4-chlorophenol reported elsewhere.展开更多
Titanium is a very important element for several industrial applications, being one of the ninth most abundant elements in the Earth’s crust (0.63% wt). In this work it will discuss the different mining and industria...Titanium is a very important element for several industrial applications, being one of the ninth most abundant elements in the Earth’s crust (0.63% wt). In this work it will discuss the different mining and industrial activities involved in the production of titanium dioxide. The first step analyzed will treat about the beneficiation mining process of titanium mineral, and secondly, it will discuss the two main processes of the TiO2 manufacturing (sulphate and chloride routes). In addition, we will show different uses of the titanium dioxide pigment as filler in paper, plastics and rubber industries and as flux in glass manufacture, etc. Finally, we will show that the old wastes are currently called co-products since they were valorized, being commercialized by the Spanish industry of TiO2 production in different fields such as agriculture, civil engineering, or cement manufacturing.展开更多
Titanium dioxide films were firstly deposited on glass substrate by DBD-CVD (dielectric barrier discharge enhanced chemical vapor deposition) technique. The structure of the films was investigated by X-ray diffracti...Titanium dioxide films were firstly deposited on glass substrate by DBD-CVD (dielectric barrier discharge enhanced chemical vapor deposition) technique. The structure of the films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM). TiO2 films deposited under atmosphere pressure show preferred orientation, and exhibit columnar-like structure, while TiO2 films deposited under low gas pressure show no preferred orientation. The columnar-like structure with preferred orientation exhibits higher photocatalytic efficiency, since the columnar structure has larger surface area. However, it contributes little to the improvement of hydrophilicity. DBD-CVD is an alternative method to prepare photocatalytic TiO2 for its well-controllable property.展开更多
In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-l...In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-liquid jet separator was studied,while Ca(OH)_(2),Na_(2)CO_(3),NaOH solution,and water were used as absorbents.This paper investigated the influence of gas cyclone-liquid jet separator’s various process parameters on the removal rate of hydrogen chloride gas.The mechanism of mass transfer in the process of removing hydrogen chloride was discussed,and the effect and feasibility of HCl gas removal in the gas cyclone-liquid jet absorption separator were studied.The results showd that the removal efficiency of hydrogen chloride maintained above 95%,up to 99.9%,and the total mass transfer coefficient reached0.28 mol·m^(-3)·s^(-1)·k Pa^(-1).Under the same conditions,the absorption effect and total mass transfer coefficient of weak basic absorption liquid can be greatly improved by increasing the flow rate of absorption liquid,but the absorption effect and total mass transfer coefficient of strong alkaline absorption liquid can’t be improved obviously.The larger the inlet gas volume,the higher the gas concentration,the lower the absorption efficiency and the lower the total volumetric mass transfer coefficient.展开更多
A new type of inorganic-polymer materials of epoxy Titanium Dioxide and Zinc Oxide was prepared. In this work, the mechanical properties of polymer composites reinforced with ceramic nanoparticles were investigated. T...A new type of inorganic-polymer materials of epoxy Titanium Dioxide and Zinc Oxide was prepared. In this work, the mechanical properties of polymer composites reinforced with ceramic nanoparticles were investigated. Three points bending tests demonstrated an enhancement in flexural strength and flexural modulus respectively, compared to the pure epoxy. The reinforcement of nanoparticulate materials was Titanium Dioxide and Zinc Oxide with various weight fraction. Experimental tests results indicated that the composite materials have significantly higher modulus of elasticity than the matrix material. It was found that the enhancement in modulus of elasticity was directly proportional to the weight fraction of reinforcement material, and that Zinc Oxide composites have higher modulus of elasticity than Titanium Dioxide composites with equivalent of weight fraction. The wear results showed that nanoparticles improved the wear resistance of epoxy nanocomposites, the Titanium Dioxide matrix particles could improve the wear resistance of the epoxy more efficiently than Zinc Oxide particles. The fatigue test showed that the fatigue resistance of epoxy Zinc Oxide matrix particles was higher than that of Titanium Dioxide matrix particles.展开更多
Preparing titanium dioxide from titania-rich slag (TiO2 73wt%) by molten NaOH method has been developed. The effects of temperature and reaction time on the titanium conversion were investigated. The results showed ...Preparing titanium dioxide from titania-rich slag (TiO2 73wt%) by molten NaOH method has been developed. The effects of temperature and reaction time on the titanium conversion were investigated. The results showed that temperature had significant influence on the titanium conversion as well as the structure of the product. About 92% of titanium in the titania-rich slag could be converted after reacting with NaOH at 500℃ for 1 h. Metatitanic acid was formed through the steps of washing treatment, acid dissolution, and hydrolysis. Well-dispersed spherical titanium dioxide particles with an average size of 0.1-0.4μm can be obtained by calcination of metatitanic acid. In addition, the content of titanium dioxide in the product is up to 98.6wt%, which can be used as pigments after further treatment of coating and crushing.展开更多
Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activitie...Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activities, different concentrations of neodymium ions (Nd/Ti molar ratio was 0.5%, 0.7%, 0.9%, and 1.1% respectively) were added into the sol. X-ray diffraction (XRD), X-ray photoelectron spectros-copy (XPS), and atom force microscopy (AFM) were applied to characterize the modified films. A kind of typical textile industry pollutant (Rhodamine B) was used to evaluate the photocatalytic activities of the films under visible light. The results showed that the activities of the films were improved by doping Nd ions into the sol.展开更多
文摘The use of titanium dioxide nanoparticles (nTiO<sub>2</sub>) is gaining interest in agriculture because of their impact on many aspects of plant growth. The present study examines the effects of nTiO<sub>2</sub> (5 nm and 10 nm) applied to seeds and the seedlings as a foliar application on various aspects of growth characteristics and biomass accumulation in lettuce (Lactuca sativa, cv. Grand Rapids). Application of 10 nm nTiO<sub>2</sub> to seeds through imbibition resulted in a significant reduction in shoot biomass accumulation while 5 nm nTiO<sub>2</sub> did not affect the biomass accumulation in lettuce. The application of 10 nm nTiO<sub>2</sub> reduced the fresh shoot biomass accumulation by about 18% compared to the control plants. Other growth characteristics such as shoot dry biomass, root fresh and dry biomass, plant height, and leaf area were not affected by the application of both 5 nm and 10 nm nTiO<sub>2</sub>. In addition, foliar application of these nanoparticles to the lettuce seedlings did not have a significant effect on most of the growth parameters examined, and the increasing concentration ranging from 5 nm/L to 400 mg/L did not produce a consistent response in lettuce. Thus, nTiO<sub>2</sub> application to lettuce seeds had a notable negative impact on shoot growth while foliar application did not have a significant effect on many plant growth characteristics. However, foliar applications produced some symptoms of toxicity to the foliage in the form of necrotic or chlorotic patches on the leaves, which were more pronounced with increasing concentrations of both 5 nm and 10 nm nTiO<sub>2</sub>. However, these symptoms were apparent at a concentration as low as 50 mg/L of nTiO<sub>2</sub>. Thus, foliar application of nTiO<sub>2</sub> may not have a significant impact on many of the growth characteristics in lettuce, but it can result in foliar toxicity.
基金financially supported by the National Natural Science Foundation of China (No.51874099)the National Science Foundation of Fujian Province’s Key Project,China (No.2021J02031)the support from the open fund from the Academy of Carbon Neutrality of Fujian Normal University,China (No.CZH2022-06)。
文摘To meet the low-cost concept advocated by the sodium metal anode,this paper reports the use of a pulsed electrodeposition technology with ionic liquids as electrolytes to achieve uniform nanoplating of metallic magnesium films at around 20 nm on spaced titanium dioxide(TiO_(2))nanotubes(STNA-Mg).First,the sodiophilic magnesium metal coating can effectively reduce the nucleation overpotential of sodium metal.Moreover,three-dimensional STNA can limit the volume expansion during sodium metal plating and stripping to achieve the ultrastable deposition and stripping of sodium metals with a high Coulombic efficiency of up to 99.5%and a small voltage polarization of 5 mV in symmetric Na||Na batteries.In addition,the comparative study of sodium metal deposition behavior of STNA-Mg and STNA-Cu prepared by the same route further confirmed the advantage of magnesium metal to guide sodium metal growth.Finally,the prepared STNA-Mg-Na metal anode and commercial sodium vanadium phosphate cathode were assembled into a full cell,delivering a discharge capacity of 110.2 mAh·g^(-1)with a retention rate of 95.6%after 110 cycles at 1C rate.
基金supported by the National Natural Science Foundation of China(No.22108108,22205108,and No.22108106)China Postdoctoral Science Foundation No.2022M721381.
文摘Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions.Photocatalytic technology is a potential solution to convert N2 to ammonia.However,the poor light absorption and low charge carrier separation efficiency in conventional semiconductors are bottlenecks for the application of this technology.Herein,a facile synthesis of anatase TiO_(2)nanosheets with an abundance of surface oxygen vacancies(TiO_(2)-OV)via the calcination treatment was reported.Photocatalytic experiments of the prepared anatase TiO_(2)samples showed that TiO_(2)-OV nanosheets exhibited remarkably increased ammonia yield for solar-driven N2 fixation in pure water,without adding any sacrificial agents.EPR,XPS,XRD,UV-Vis DRS,TEM,Raman,and PL techniques were employed to systematically explore the possible enhanced mechanism.Studies revealed that the introduced surface oxygen vacancies significantly extended the light absorption capability in the visible region,decreased the adsorption and activation barriers of inert N2,and improved the separation and transfer efficiency of the photogenerated electronhole pairs.Thus,a high rate of ammonia evolution in TiO_(2)-OV was realized.This work offers a promising and sustainable approach for the efficient artificial photosynthesis of ammonia.
基金Project(2012FU125X03)supported by Open Research Fund Project of National Engineering Research Center of SeafoodChina+3 种基金Project(2011–191)supported by the Key Science and Technology Platform of Liaoning Provincial Education DepartmentChinaProject(2010–354)supported by the Science and Technology Platform of DalianChina
文摘Ho^3+-doped titanium dioxide(TiO2:Ho^3+) downconversion(DC) nanowires were synthesized through a simple hydrothermal method followed by a subsequent calcination process after being immersed in Ho(NO3)3 aqueous solution. Moreover, TiO2:Ho^3+ nanowires(HTNWs) were used as the photoanode in dye-sensitized solar cells(DSSCs) to investigate their photoelectric properties. Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were used to characterize the morphology and structure of the material, respectively. The photofluorescence and ultraviolet-visible absorption spectra of HTNWs reveal a DC from the near and middle ultraviolet light to visible light which matches the strong absorbed region of the N719 dye. Compared with the pure TNW photoanode, HTNWs DC photoanodes show greater photovoltaic efficiency. The photovoltaic conversion efficiency(η) of the DSSCs with HTNWs photoanode doped with 4% Ho2O3(mass fraction) is two times that with pure TNW photoanode. This enhancement could be attributed to HTNWs which could extend the spectral response range of DSSCs to the near and middle ultraviolet region and increase the short-circuit current density(Jsc) of DSSCs, thus leading to the enhancement of photovoltaic conversion efficiency.
基金Project (u0837604) supported by the Joint Funds of the National Natural Science Foundation of China and Yunnan ProvinceProject (20095314110003) supported by the Special Research Funds of the Doctor Subject of Higher School,China
文摘Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the molar ratio of Al2O3 to C was 1:4,and 10% TiO2 and excess AlCl3 were added.The results show that TiC is produced by C and TiO2 after TiO2 transforms from anatase into rutile gradually.In the temperature range of 1 763?1 783 K,the compounds of Ti and Al are not found in slags and condensate.The purity of aluminum reaches 98.35%,and TiO2 does not participate in alumina carbothermic reduction process and chlorination process in vacuum.
文摘The adsorption potential of titanium dioxide (TiO2) nanoparticles for removing arsenic from drinking water was evaluated. Pure and iron-doped TiO2 particles are synthesized via sol-gel method. The synthesized TiO2 nanoparticles were then immobilized on ordinary sand for adsorption studies. Adsorption isotherms were conducted on the synthesized nanoparticles as well as the sand coated with TiO2 nanoparticles under varying conditions of air and light, namely, the air-sunlight (A-SL), air-light (AL), air-dark (AD) and nitrogen-dark (ND). X-ray diffraction (XRD) analysis showed that the pure and iron-doped TiO2 nanoparticles were in 100% anatase crystalline phase with crystai sizes of 108 and 65 nm, respectively. Adsorption of arsenic on the three adsorbents was non-linear that could be described by the Freundlich and Langmuir adsorption models. Iron doping enhanced the adsorption capacity of TiO2 nanoparticles by arresting the grain growth and making it visible light responsive resulting in a higher affinity for arsenic. Similarly, the arsenic removal by adsorption on the sand coated with TiO2 nanoparticles was the highest among the three types of sand used. In all cases, As(V) was adsorbed more compared with As(Ⅲ). The solution pH appeared to be the most important factor in controlling the amount of arsenic adsorbed.
文摘A series of photocatalysts of un-doped, single-doped and co-doped nanometer titanium diox- ide (TiO2) have been successfully prepared by template method using Fe(NO3)3.9H2O, La(NO3)3.6H2O, and tetrabutyl titanate as precursors and glucan as template. Scanning electron microscopy, X-ray diffraction, and N2 adsorption-desorption measurement were employed to characterize the morphology, crystal structure and surface structure of the samples. The photo-absorbance of the obtained catalysts was measured by UV-Vis absorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl orange in an aqueous solution. The characterizations indicated that the prepared photocatalysts consisted of anatase phase and possessed high surface area of ca. 163-176 m2/g. It was shown that the Fe and La co-doped nano-TiO2 could be activated by visible light and could thus be used as an effective catalyst in photo-oxidation reactions. The synergistic effect of Fe and La co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of co-doped nano-TiO2 was also confirmed, the photocatalytic activity of codoped nano-TiO2 remained above 89.6% of the fresh sample after being used four times.
基金Supported by the National Natural Science Foundation of China (No.81301080)the National Key Technology R&D Program of China (2012BAI08B06)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘AIM: To investigate the impact of titanium dioxide nanoparticles(Ti O2NPs) on embryonic development and retinal neurogenesis.METHODS: The agglomeration and sedimentation of Ti O2 NPs solutions at different dilutions were observed,and the ultraviolet-visible spectra of their supernatants were measured. Zebrafish embryos were experimentally exposed to Ti O2 NPs until 72 h postfertilization(hpf). The retinal neurogenesis and distribution of the microglia were analyzed by immunohistochemistry and whole mount in situ hybridization.RESULTS: The 1 mg/L was determined to be an appropriate exposure dose. Embryos exposed to Ti O2 NPs had a normal phenotype. The neurogenesis was initiated on time, and ganglion cells, cones and rods were well differentiated at 72 hpf. The expression of fms m RNA and the 4C4 antibody, which were specific to microglia in the central nervous system(CNS), closely resembled their endogenous profile.CONCLUSION: These data demonstrate that short-term exposure to Ti O2 NPs at a low dose does not lead to delayed embryonic development or retinal neurotoxicity.
基金We greatly acknowledge the National Natural Science Foundation of China for financial support.
文摘The sonocatalytic damage of bovine serum albumin (BSA) was studied in the presence of nanometer titanium dioxide (TiO2) powders by low frequency (80 kHz) ultrasound. The destruction of secondary structure and change of α-helical structure of BSA were reflected by ultraviolet (UV) and circular dichroism (CD) spectroscopies.
基金supported by an earmark fund for the National Key Basic Research Program of China(2011CB100805)
文摘Protein phosphorylation is an important post-translational modification that regulates milk protein structure and function.The objective of this study was to analyze the presence of phosphorylated casein.Bovine milk proteins were first separated by SDS polyacrylamide gel electrophoresis.After in gels digestion and extraction,phosphorylated peptides were enriched by titanium dioxide and identified by ultra performance liquid chromatography coupled with nano electrospray ionization tandem mass spectrometry.This method ensured the identification of 20 phosphorylated peptides,including 7 phosphorylated forms of α_s1-casein,8 α_s2-casein,and 5 β-casein.Eight phosphorylated sites derived from 3 α_s1-caseins,3 α_s2-caseins,and 2 β-caseins were also identified,and localized on residues Ser^61,Ser^63 and Ser^130 in α_s1-casein;Thr^145,Ser^146 and Ser^158 in α_s2-casein;and Ser^50 and Thr^56 in β-casein.These findings provide valuable information for investigating casein phosphorylation of the bovine milk.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB722705)the Shandong Provincial Natural Science Foundation for Outstanding Young Scientists, China (Grant No.JQ201002)the Shandong Provincial Scientific Research Award for Outstanding Young and Middle-Aged Scientists,China (Grant No.BS2009CL0005)
文摘Titanium dioxide nanoparticles with an average diameter of about 10 nm are fabricated using a sintering method. The degradation of methyl orange indicates that the photocatalytic efficiency is greatly enhanced, which is measured to be 62.81%. Transmission electron microscopy is used to investigate the microstructure of TiO2 nanoparticles in order to correlate their photocatalytic properties. High-resolution transmission electron microscopy examinations show that all the nanoparticles belong to the anatase phase, and pure edge dislocations exist in some nanoparticles. The great enhancement of photocatalytic efficiency is attributed to two factors, the quantum size effect and the surface defects in the nanoparticles.
基金the National Natural Science Foundation of China(Grant No.51408162)the Special Financial Grant from the China Postdoctoral Science Foundation(Grant No.2016T90303)+1 种基金the China Postdoctoral Science Foundation(Grant No.2014M551258)the Heilongjiang Province Postdoctoral Science Foundation(Grant No.LBH-Z14077)。
文摘At present,a growing number of consumer products contain engineered nanoparticle TiO2(nano⁃TiO2),which has resulted in the consequences of nano⁃TiO2 entering the aquatic environment directly or indirectly at some stage.The fate of nano⁃TiO2 in the aquatic environment has become the key factor which affects its safety application and nanoecotoxicology.This paper aims to investigate how the dissolved organic matters(DOM),especially the molecular weight fractions in the aquatic environment,affect the aggregation,stability,and fate of nano⁃TiO2,and the interaction mechanism of DOM and nano⁃TiO2.Results of dynamic light scattering(DLS)showed that the molecular weight of DOM molecules caused different aggregation rates of nano⁃TiO2 in aqueous solution.Fourier Transform infrared spectroscopy(FTIR)results indicated the molecular structure is characteristics of DOM fractions and the mechanisms of bonds formation between DOM and nano⁃TiO2.Results of three⁃dimensional excitation⁃emission matrices(3D⁃EEM)confirmed the FTIR results and implied the increase of the stability of theπ-πconjugated system in the presence of DOM.In addition,low molecular weight of DOM fractions appeared to show more affinity with nano⁃TiO2 than high molecular weight fractions.
文摘A simple and effective method of removing polluted organics in water is reported here.Titanium dioxide is a catalyst in photo-oxidation of monocrotophos.The mechanism of photocatalytic oxidation and the kinetics of the reaction were studied. This same principle also leads to the construction of instrument of PTR-FIA analysis for monitoring organic phosphorus and phosphate in water.
文摘In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs to be better understood. Nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofluoric acid solution during 20 minutes and then annealed in air atmosphere. In-situ X-ray diffraction analysis, coupled with thermogravimetry, gives us an inside on the oxidation behaviour of titanium dioxide nanotube layers compared to bulk reference samples. Structural studies were performed at 700°C for 12 h in order to follow the time consequences on the oxidation of the material, in sufficient stability conditions. In-situ XRD brought to light that the amorphous oxide layer induced by anodization is responsible for the simultaneous growths of anatase and rutile phase during the first 30 minutes of annealing while the bulk sample oxidation leads to the nucleation of a small amount of anatase TiO<sub>2</sub>. The initial amorphous oxide layer created by anodization is also responsible for the delay in crystallization compared to the bulk sample. Thermogravimetric analysis exhibits parabolic shape of the mass gain for both anodized and bulk sample;this kinetics is caused by the formation of a rutile external protective layer, as depicted by the associated in-situ XRD diffractograms. We recorded that titanium dioxide nanotube layers exhibit a lower mean mass gain than the bulk, because of the presence of an initial amorphous oxide layer on anodized samples. In-situ XRD results also provide accurate information concerning the sub-layers behavior during the annealing treatment for the bulk and nanostructured layer. Anatase crystallites are mainly localized at the interface oxide layer-metal and the rutile is at the external interface. Sample surface topography was characterized using scanning electron microscopy (SEM). As a probe of the photoactivity of the annealed TiO<sub>2</sub> nanotube layers, degradation of an acid orange 7 (AO7) dye solution and 4-chlorophenol under UV irradiation (at 365 nm) were performed. Such titanium dioxide nanotube layers show an efficient photocatalytic activity and the analytical results confirm the degradation mechanism of the 4-chlorophenol reported elsewhere.
基金This research has been partially supported by the Government of Andalusia’s project“Characterization and modelling of the phosphogypsum stacks from Huelva for their environmental management and control”(Ref.:RNM-6300) by National Institution of Higher Education,Science,Technology and Innovation of the Republic of Ecuador-(SENESCYT for its acronym in Spanish)+2 种基金The authors would like to acknowledge the financial support received from the company Tioxide-Huelva by the research projects“Valorization of red gypsum from the industrial production of titanium dioxide”(PROFIT,CIT-310200-2007-47)“Applications of red gypsum and Tionite waste in commercial applications”The authors also thank to the technical staff for the advisory provided in the explanation of the results.
文摘Titanium is a very important element for several industrial applications, being one of the ninth most abundant elements in the Earth’s crust (0.63% wt). In this work it will discuss the different mining and industrial activities involved in the production of titanium dioxide. The first step analyzed will treat about the beneficiation mining process of titanium mineral, and secondly, it will discuss the two main processes of the TiO2 manufacturing (sulphate and chloride routes). In addition, we will show different uses of the titanium dioxide pigment as filler in paper, plastics and rubber industries and as flux in glass manufacture, etc. Finally, we will show that the old wastes are currently called co-products since they were valorized, being commercialized by the Spanish industry of TiO2 production in different fields such as agriculture, civil engineering, or cement manufacturing.
文摘Titanium dioxide films were firstly deposited on glass substrate by DBD-CVD (dielectric barrier discharge enhanced chemical vapor deposition) technique. The structure of the films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM). TiO2 films deposited under atmosphere pressure show preferred orientation, and exhibit columnar-like structure, while TiO2 films deposited under low gas pressure show no preferred orientation. The columnar-like structure with preferred orientation exhibits higher photocatalytic efficiency, since the columnar structure has larger surface area. However, it contributes little to the improvement of hydrophilicity. DBD-CVD is an alternative method to prepare photocatalytic TiO2 for its well-controllable property.
基金the sponsorship of National Natural Science Foundation of China(21878099)Science and Technology Commission of Shanghai Municipality(19DZ1208000)。
文摘In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-liquid jet separator was studied,while Ca(OH)_(2),Na_(2)CO_(3),NaOH solution,and water were used as absorbents.This paper investigated the influence of gas cyclone-liquid jet separator’s various process parameters on the removal rate of hydrogen chloride gas.The mechanism of mass transfer in the process of removing hydrogen chloride was discussed,and the effect and feasibility of HCl gas removal in the gas cyclone-liquid jet absorption separator were studied.The results showd that the removal efficiency of hydrogen chloride maintained above 95%,up to 99.9%,and the total mass transfer coefficient reached0.28 mol·m^(-3)·s^(-1)·k Pa^(-1).Under the same conditions,the absorption effect and total mass transfer coefficient of weak basic absorption liquid can be greatly improved by increasing the flow rate of absorption liquid,but the absorption effect and total mass transfer coefficient of strong alkaline absorption liquid can’t be improved obviously.The larger the inlet gas volume,the higher the gas concentration,the lower the absorption efficiency and the lower the total volumetric mass transfer coefficient.
文摘A new type of inorganic-polymer materials of epoxy Titanium Dioxide and Zinc Oxide was prepared. In this work, the mechanical properties of polymer composites reinforced with ceramic nanoparticles were investigated. Three points bending tests demonstrated an enhancement in flexural strength and flexural modulus respectively, compared to the pure epoxy. The reinforcement of nanoparticulate materials was Titanium Dioxide and Zinc Oxide with various weight fraction. Experimental tests results indicated that the composite materials have significantly higher modulus of elasticity than the matrix material. It was found that the enhancement in modulus of elasticity was directly proportional to the weight fraction of reinforcement material, and that Zinc Oxide composites have higher modulus of elasticity than Titanium Dioxide composites with equivalent of weight fraction. The wear results showed that nanoparticles improved the wear resistance of epoxy nanocomposites, the Titanium Dioxide matrix particles could improve the wear resistance of the epoxy more efficiently than Zinc Oxide particles. The fatigue test showed that the fatigue resistance of epoxy Zinc Oxide matrix particles was higher than that of Titanium Dioxide matrix particles.
基金financially supported by the National Key Technologies R & D Program of China (No.2006BAC02A05)the National Basic Research Program of China (No. 2007CB613501)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KGCX2-YW-214)the Special Funds of "Mountain Tai Scholar" Construction Project
文摘Preparing titanium dioxide from titania-rich slag (TiO2 73wt%) by molten NaOH method has been developed. The effects of temperature and reaction time on the titanium conversion were investigated. The results showed that temperature had significant influence on the titanium conversion as well as the structure of the product. About 92% of titanium in the titania-rich slag could be converted after reacting with NaOH at 500℃ for 1 h. Metatitanic acid was formed through the steps of washing treatment, acid dissolution, and hydrolysis. Well-dispersed spherical titanium dioxide particles with an average size of 0.1-0.4μm can be obtained by calcination of metatitanic acid. In addition, the content of titanium dioxide in the product is up to 98.6wt%, which can be used as pigments after further treatment of coating and crushing.
基金Project supported by the State Key Laboratory of Urban Water Resource and Environment (HIT 08UWQA05) and National Key Laboratory of Vacuum and Cryogenics Technology and Physics (9140C550201060C55)
文摘Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activities, different concentrations of neodymium ions (Nd/Ti molar ratio was 0.5%, 0.7%, 0.9%, and 1.1% respectively) were added into the sol. X-ray diffraction (XRD), X-ray photoelectron spectros-copy (XPS), and atom force microscopy (AFM) were applied to characterize the modified films. A kind of typical textile industry pollutant (Rhodamine B) was used to evaluate the photocatalytic activities of the films under visible light. The results showed that the activities of the films were improved by doping Nd ions into the sol.