Ti/Fe clad plate had attracted extensive attention because of its important application. In order to reduce the titanium layer thickness, the explosive welding of TA1 titanium foil to Q235 steel plate was carried out....Ti/Fe clad plate had attracted extensive attention because of its important application. In order to reduce the titanium layer thickness, the explosive welding of TA1 titanium foil to Q235 steel plate was carried out. The interfacial bonding performance was analyzed by micromorphology analysis and mechanical property test, and the formation process of interfacial wave and molten block in the vortex was simulated by smoothed particle hydrodynamics(SPH) method. The results showed that salt as pressure transfer layer used in explosive welding could play a good buffer effect on the collision between flyer and base layers. Regular waveforms were formed on the bonding interface, and the titanium foil/steel clad plate exhibited good welding quality and bonding property. The crest of the observed interfacial wave moved 200 μm from the beginning to the final formation, and it was important of jet on the formation of interfacial waveform. The interface was mainly bonded in the form of molten layer, and the grains near the interface were streamlined. Molten block containing intermetallic compounds and metal oxides appeared in the vortex of wave crest.展开更多
In this study, an effective method is proposed for controlling a titanium foil surface's wettability. A microholes array series is fabricated on the surface of titanium foil by a femtosecond laser under different ...In this study, an effective method is proposed for controlling a titanium foil surface's wettability. A microholes array series is fabricated on the surface of titanium foil by a femtosecond laser under different laser energy and pulse number. The changes of the titanium surface's morphology are characterized. When placed in a darkroom with high-temperature treatment and immersed in alcohol under UV irradiation, respectively, the femtosecond laser treated surfaces display switchable wettability. It is demonstrated that the changing between Ti-OH and Ti-O prompts the transformation between superhydrophilic and superhydrophobic. Compared with existing reports, the switchable wetting cycle is shortened to 1.5 h. The functional surfaces with switchable wettability have potential applications in oil–water separation and water mist collection.展开更多
Introduction of titanium oxides with high permittivity on etched aluminum foils’ surface has been successfully utilized to increase specific capacitance of anode foils for aluminum electrolytic capacitors. In order t...Introduction of titanium oxides with high permittivity on etched aluminum foils’ surface has been successfully utilized to increase specific capacitance of anode foils for aluminum electrolytic capacitors. In order to quantify the concentration of titanium (IV) on the etched aluminum foil precisely, a simple and rapid spectrophotometric procedure has been developed. After optimizing a series of variables including absorbance wavelength, concentration of nitric acid, concentration of hydrogen peroxide, nitration time and developing time, analytical precision and accuracy were tested by using standard working solution containing known amount of titanium (IV). The results showed that Lambert-Beer’s law was obeyed in the range of 0.01 to 3.00 mmol·L﹣1. The relative standard deviation (RSD) ranged from 0.67% to 1.09% (n = 6), and the recovery was between 99.17% - 100.03%. Investigation on effect of Al3+ ion indicated that there was no interference in the absorbance of titanium (IV) at 410 nm. The proposed procedure was applied to real samples for the determination of titanium (IV), and the results were in a good agreement with the values certified by inductively coupled plasma-atomic emission spectrometry (ICP-AES).展开更多
An experiment with thin titanium foils irradiated by two pulses delayed in time is conducted on the bnenguang-Il laser facility. A prepulse induces an underdense plasma, 2-ns later a main pulse (λL ≈ 0.35 μm, EL ...An experiment with thin titanium foils irradiated by two pulses delayed in time is conducted on the bnenguang-Il laser facility. A prepulse induces an underdense plasma, 2-ns later a main pulse (λL ≈ 0.35 μm, EL ≈120 J, τL ≈100 ps) is injected into the underdense plasma and produces strong line emission from the titanium K shell (i.e., Hea at 4.7 keV). Data show that the intensity of 4.7-keV X-ray emission with the prepulse is approximately twice more than without the prepulse, and can be used as a backlighting source satisfying the diagnostic requirements for dense plasma probing. High- quality plasma images are obtained with the backlighfing 4.7-keV X-rays in a Rayleigh-Taylor hydrodynamic instability experiment.展开更多
With the continuous expansion of the application range of microelectromechanical systems,microdevice forming technology has achieved remarkable results.However,it is challenging to develop new microforming processes t...With the continuous expansion of the application range of microelectromechanical systems,microdevice forming technology has achieved remarkable results.However,it is challenging to develop new microforming processes that are low cost,environmentally friendly,and highly flexible;the high-energy shock wave in a cavitation bubble's collapse process is used as the loading force.Herein,a new process for the microbulging of the water-jet cavitation is proposed.A series of experiments involving the water-jet cavitation shock microbulging process for TA2 titanium foil is performed on an experimental system.The microforming feasibility of the water-jet cavitation is investigated by characterizing the shape of the formed part.Subsequently,the effects of the main parameters of the water-jet cavitation on the bulging profile,forming depth,surface roughness,and bulging thickness distribution of TA2 titanium foil are revealed.The results show that the plastic deformation increases nonlinearly with the incident pressure.When the incident pressure is 20 MPa,the maximum deformation exceeds 240 pm,and the thickness thinning ratio changes within 10%.The microbulging feasibility of water-jet cavitation is verified by this phenomenon.展开更多
文摘Ti/Fe clad plate had attracted extensive attention because of its important application. In order to reduce the titanium layer thickness, the explosive welding of TA1 titanium foil to Q235 steel plate was carried out. The interfacial bonding performance was analyzed by micromorphology analysis and mechanical property test, and the formation process of interfacial wave and molten block in the vortex was simulated by smoothed particle hydrodynamics(SPH) method. The results showed that salt as pressure transfer layer used in explosive welding could play a good buffer effect on the collision between flyer and base layers. Regular waveforms were formed on the bonding interface, and the titanium foil/steel clad plate exhibited good welding quality and bonding property. The crest of the observed interfacial wave moved 200 μm from the beginning to the final formation, and it was important of jet on the formation of interfacial waveform. The interface was mainly bonded in the form of molten layer, and the grains near the interface were streamlined. Molten block containing intermetallic compounds and metal oxides appeared in the vortex of wave crest.
基金supported by the National Key R&D Program of China (No.2017YFB1104300)the National Natural Science Foundation of China (No.51975595)+1 种基金the Natural Science Foundation of Hunan Province (No.2020JJ5738)the Project of State Key Laboratory of High Performance Complex Manufacturing (No.ZZYJKT2020-10)。
文摘In this study, an effective method is proposed for controlling a titanium foil surface's wettability. A microholes array series is fabricated on the surface of titanium foil by a femtosecond laser under different laser energy and pulse number. The changes of the titanium surface's morphology are characterized. When placed in a darkroom with high-temperature treatment and immersed in alcohol under UV irradiation, respectively, the femtosecond laser treated surfaces display switchable wettability. It is demonstrated that the changing between Ti-OH and Ti-O prompts the transformation between superhydrophilic and superhydrophobic. Compared with existing reports, the switchable wetting cycle is shortened to 1.5 h. The functional surfaces with switchable wettability have potential applications in oil–water separation and water mist collection.
文摘Introduction of titanium oxides with high permittivity on etched aluminum foils’ surface has been successfully utilized to increase specific capacitance of anode foils for aluminum electrolytic capacitors. In order to quantify the concentration of titanium (IV) on the etched aluminum foil precisely, a simple and rapid spectrophotometric procedure has been developed. After optimizing a series of variables including absorbance wavelength, concentration of nitric acid, concentration of hydrogen peroxide, nitration time and developing time, analytical precision and accuracy were tested by using standard working solution containing known amount of titanium (IV). The results showed that Lambert-Beer’s law was obeyed in the range of 0.01 to 3.00 mmol·L﹣1. The relative standard deviation (RSD) ranged from 0.67% to 1.09% (n = 6), and the recovery was between 99.17% - 100.03%. Investigation on effect of Al3+ ion indicated that there was no interference in the absorbance of titanium (IV) at 410 nm. The proposed procedure was applied to real samples for the determination of titanium (IV), and the results were in a good agreement with the values certified by inductively coupled plasma-atomic emission spectrometry (ICP-AES).
文摘An experiment with thin titanium foils irradiated by two pulses delayed in time is conducted on the bnenguang-Il laser facility. A prepulse induces an underdense plasma, 2-ns later a main pulse (λL ≈ 0.35 μm, EL ≈120 J, τL ≈100 ps) is injected into the underdense plasma and produces strong line emission from the titanium K shell (i.e., Hea at 4.7 keV). Data show that the intensity of 4.7-keV X-ray emission with the prepulse is approximately twice more than without the prepulse, and can be used as a backlighting source satisfying the diagnostic requirements for dense plasma probing. High- quality plasma images are obtained with the backlighfing 4.7-keV X-rays in a Rayleigh-Taylor hydrodynamic instability experiment.
基金Supported by Nati onal Natural Science Foundation of China(Grant Nos.51575245,51679112)Jiangsu Province Key Research and Development Program of China(Grant No.BE2016161),Jiangsu Province"Six Tale nts Peak"Project of China(Grant No.XNYQC-002).
文摘With the continuous expansion of the application range of microelectromechanical systems,microdevice forming technology has achieved remarkable results.However,it is challenging to develop new microforming processes that are low cost,environmentally friendly,and highly flexible;the high-energy shock wave in a cavitation bubble's collapse process is used as the loading force.Herein,a new process for the microbulging of the water-jet cavitation is proposed.A series of experiments involving the water-jet cavitation shock microbulging process for TA2 titanium foil is performed on an experimental system.The microforming feasibility of the water-jet cavitation is investigated by characterizing the shape of the formed part.Subsequently,the effects of the main parameters of the water-jet cavitation on the bulging profile,forming depth,surface roughness,and bulging thickness distribution of TA2 titanium foil are revealed.The results show that the plastic deformation increases nonlinearly with the incident pressure.When the incident pressure is 20 MPa,the maximum deformation exceeds 240 pm,and the thickness thinning ratio changes within 10%.The microbulging feasibility of water-jet cavitation is verified by this phenomenon.