期刊文献+
共找到781篇文章
< 1 2 40 >
每页显示 20 50 100
Elimination of methicillin‑resistant Staphylococcus aureus biofilms on titanium implants via photothermally‑triggered nitric oxide and immunotherapy for enhanced osseointegration
1
作者 Yong‑Lin Yu Jun‑Jie Wu +5 位作者 Chuan‑Chuan Lin Xian Qin Franklin R.Tay Li Miao Bai‑Long Tao Yang Jiao 《Military Medical Research》 SCIE CAS CSCD 2024年第2期157-179,共23页
Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to expl... Background:Treatment of methicillin-resistant Staphylococcus aureus(MRSA)biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium(Ti)implants.There is a need to explore more effective approaches for the treatment of MRSA biofilm infections.Methods:Herein,an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles(PDA),nitric oxide(NO)release donor sodium nitroprusside(SNP)and osteogenic growth peptide(OGP)onto Ti implants,denoted as Ti-PDA@SNP-OGP.The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy,X-ray photoelectron spectroscope,water contact angle,photothermal property and NO release behavior.The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2′,7′-dichlorofluorescein diacetate probe,1-N-phenylnaphthylamine assay,adenosine triphosphate intensity,O-nitrophenyl-β-D-galactopyranoside hydrolysis activity,bicinchoninic acid leakage.Fluorescence staining,assays for alkaline phosphatase activity,collagen secretion and extracellular matrix mineralization,quantitative real‑time reverse transcription‑polymerase chain reaction,and enzyme-linked immunosorbent assay(ELISA)were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells(MSCs),RAW264.7 cells and their co-culture system.Giemsa staining,ELISA,micro-CT,hematoxylin and eosin,Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms,inhibition of inflammatory response,and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo.Results:Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light(NIR)irradiation,and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species(ROS)-mediated oxidative stress,destroying bacterial membrane integrity and causing leakage of intracellular components(P<0.01).In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs,but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype(P<0.05 or P<0.01).The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways(P<0.01).In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model(P<0.01).Conclusions:Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries. 展开更多
关键词 Polydopamine nanoparticles Methicillin-resistant Staphylococcus aureus Nitric oxide OSSEOINTEGRATION Osteo-immunomodulation Photothermal effect titanium implants
下载PDF
Improvement of antibacterial, anti-inflammatory, and osteogenic properties of OGP loaded Co-MOF coating on titanium implants for advanced osseointegration 被引量:1
2
作者 Bailong Tao Weiwei Yi +5 位作者 Xian Qin Junjie Wu Kai Li Ai Guo Jie Hao Lixue Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期131-144,共14页
The bacterial infection,especially for methicillin-resistant Staphylococcus aureus(MRSA),and the associated severe inflammatory response could extremely limit the crosstalk of RAW264.7 cells and mesenchymal stem cells... The bacterial infection,especially for methicillin-resistant Staphylococcus aureus(MRSA),and the associated severe inflammatory response could extremely limit the crosstalk of RAW264.7 cells and mesenchymal stem cells(MSCs)and lead to the undesirable osseointegration of peri–implants.It is highly demanded to modify the surface of titanium(Ti)implant to improve its anti-bacterial and anti-inflammatory properties and facilitate its disabled osseointegration.Herein,in our study,a multifunctional coating of zeolitic imidazolate frameworks-67 encapsulated osteogenic growth peptide(OGP)(ZO)was fabricated on titanium dioxide nanotubes(TNT)substrates(TNT-ZO)via the electrophoresis deposition(EPD)approach.The TNT-ZO substrates exhibited excellent antibacterial activity indicated by the reactive oxygen species(ROS)generation,outer membrane(OM)and inner membrane(IM)permeabilization change,adenosine triphosphate(ATP)decrease,and intracellular compounds(DNA/RNA)leakage.Importantly,the regulation effects of TNT-ZO coating modified titanium substrates on the RAW264.7-MSCs crosstalk could induce the anti-inflammatory and osteogenic microenvironment via multiple paracrine signaling of Runx2,BMP2,VEGF,and TGF-β1.The promoted effects of coating structure were investigated in vivo,including antibacterial effect,osteogenic differentiation of mesenchymal stem cells,and anti-inflammation of RAW264.7 cells,as well as infected bone regeneration and repair in bone defect transplantation model.The results demonstrated that MRSA was effectively eliminated by the hydrolysis of ZIF-67 nanoparticles on TNT-ZO substrates.Furthermore,the excellent osseointegration of peri–implants was realized simultaneously by modulating the crosstalk of RAW264.7-MSCs.This study could provide a novel approach to designing a multifunctional coating on the Ti implants for infected bone regeneration in orthopedic applications. 展开更多
关键词 titanium implants Osteogenic growth peptide ANTI-INFLAMMATORY Antibacterial activity Osteoimmunomodulation
原文传递
A HAase/NIR responsive surface on titanium implants for treating bacterial infection and improving osseointegration 被引量:1
3
作者 Dan Li Danyang Wang +9 位作者 Ye He Bailong Tao Xiaoxia Liu Yulu Yang Lu Tan Yuchen Zhang Jingwei Hu Weihu Yang Yu Tang Kaiyong Cai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第12期93-106,共14页
Bacterial infection and insufficient osseointegration are critical factors affecting the long-term success of titanium-based implants.Unfortunately,the direct application of antibiotic on Ti implants easily leads to p... Bacterial infection and insufficient osseointegration are critical factors affecting the long-term success of titanium-based implants.Unfortunately,the direct application of antibiotic on Ti implants easily leads to poor cytocompatibility,as well as the production of drug-resistant bacteria.So,in this work,we designed a prospective antibacterial strategy by combining photothermal and ciprofloxacin(CIP).The synergistic effect of photothermal and antibiotic may provide an effective bacteriostatic efficacy without sacrificing osteogenesis at a mild condition of moderate temperature and less antibiotic.Herein,CIP was loaded into mesoporous polydopamine(MPDA)nanoparticles(MPDA@CIP),which were anchored on the surface of titanium and finally covered with sodium hyaluronate-catechol(HAc)coating.The hydrophilic HAc layer could inhibit the early adhesion of bacteria,and some bacteria could secrete bacterial hyaluronidase to accelerate the degradation of HAc.This enabled smart enzyme-triggered release of antimicrobials at the site of infection on-demand and avoided unwanted side effects on normal tissues.In addition,NIR light irradiation had a positive influence on both CIP release and MPDA nanoparticle’s photothermal effect.Moreover,before anchoring MPDA@CIP,by the construction of hydroxyapatite microstructure on Ti sur-face with micro-arc oxidation and alkali heat treatment,the ability of bone formation of Ti could be promoted also.Both in vitro as well as in vivo assays demonstrated that functional Ti has an excellent antibacterial effect and osteogenic ability. 展开更多
关键词 titanium implant ANTIBIOSIS Hyaluronidase response Mesoporous polydopamine nanoparticles
原文传递
Antibiotic-loaded amphora-shaped pores on a titanium implant surface enhance osteointegration and prevent infections 被引量:4
4
作者 Viviane Ständert Kai Borcherding +3 位作者 Nicole Bormann Gerhard Schmidmaier Ingo Grunwald Britt Wildemann 《Bioactive Materials》 SCIE 2021年第8期2331-2345,共15页
Artificial prostheses for joint replacement are indispensable in orthopedic surgery.Unfortunately,the implanted surface is attractive to not only host cells but also bacteria.To enable better osteointegration,a mechan... Artificial prostheses for joint replacement are indispensable in orthopedic surgery.Unfortunately,the implanted surface is attractive to not only host cells but also bacteria.To enable better osteointegration,a mechanically stable porous structure was created on a titanium surface using laser treatment and metallic silver particles were embedded in a hydrophilic titanium oxide layer on top.The laser structuring resulted in unique amphora-shaped pores.Due to their hydrophilic surface conditions and capillary forces,the pores can be loaded preoperative with the antibiotic of choice/need,such as gentamicin.Cytotoxicity and differentiation assays with primary human osteoblast-like cells revealed no negative effect of the surface modification with or without gentamicin loading.An in vivo biocompatibility study showed significantly enhanced osteointegration as measured by push-out testing and histomorphometry 56 days after the implantation of the K-wires into rat femora.Using a S.aureus infection model,the porous,silver-coated K-wires slightly reduced the signs of bone destruction,while the wires were still colonized after 28 days.Loading the amphora-shaped pores with gentamicin significantly reduced the histopathological signs of bone destruction and no bacteria were detected on the wires.Taken together,this novel surface modification can be applied to new or established orthopedic implants.It enables preoperative loading with the antibiotic of choice/need without further equipment or post-coating,and supports osteointegration without a negative effect of the released dug,such as gentamicin. 展开更多
关键词 titanium implants Laser structuring Amphora-shaped pores Gentamicin loading Antimicrobial silver particles
原文传递
Surface modification of titanium implants with micro–nanotopography and NIR photothermal property for treating bacterial infection and promoting osseointegration 被引量:1
5
作者 Yao Ding Zhang Yuan +4 位作者 Jin-Wei Hu Kun Xu Hong Wang Peng Liu Kai-Yong Cai 《Rare Metals》 SCIE EI CAS CSCD 2022年第2期673-688,共16页
A double acid corrosion and subsequent hydrothermal treatment were used to fabricate a micro–nano-structured Ti substrates(Ti–M–N).Afterward,the mesoporous polydopamine(MPDA)nanoparticles as photothermal agent were... A double acid corrosion and subsequent hydrothermal treatment were used to fabricate a micro–nano-structured Ti substrates(Ti–M–N).Afterward,the mesoporous polydopamine(MPDA)nanoparticles as photothermal agent were prepared and immobilized on the surface of Ti–M–N samples,in order to obtain Ti–M–NMPDA sample.Unique micro–nanostructure properties and the photothermal effect of the modified Ti implant caused physical stress on the bacteria and the bacterial membrane damage,and eventually led to bacteria death.More importantly,based on excellent bioactivity and cytocompatibility of mussel-inspired materials,MPDA promoted adhesion,proliferation and osteogenic differentiation of mesenchymal stem cells in vitro.Furthermore,animal experiments in vivo further confirmed that the modified Ti implants could enhance osseointegration. 展开更多
关键词 titanium implants Bacterial infection OSSEOINTEGRATION Photothermal therapy Micro–nanotopography
原文传递
Surface treatment of titanium dental implant with H2O2 solution
6
作者 Mohammad Khodaei Kamran Amini +1 位作者 Alireza Valanezhad Ikuya Watanabe 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第9期1281-1286,共6页
The surface treatment is important for titanium and its alloys as promising candidates for dental implantation due to their bioinert surface.Titanium surface samples were modified using H2O2 solution at different time... The surface treatment is important for titanium and its alloys as promising candidates for dental implantation due to their bioinert surface.Titanium surface samples were modified using H2O2 solution at different times up to 72 h to boost their bioactivity.According to the results of the field emission scanning electron microscopy test,some nanostructures are formed on the surface of treated titanium samples and increased in size by increasing the time of treatment up to 24 h.After 24 h of application,the sharpness of nanostructures decreased and the micro-cracks and discontinuity in the coating surface increased.The results of the X-ray diffraction study and Raman spectroscopy revealed that anatase(TiO2)was formed on the surface of treated titanium samples.The peak intensity of Raman spectroscopy increased with an improvement in treatment time of up to 24 h and then decreased due to the discontinuity of the coating.Full wettability and ability to form apatite were reached at 6 h of treatment.It is clear that the treatment time has a significant effect on the surface treatment of titanium using the H2O2 solution. 展开更多
关键词 titanium implant surface treatment hydrogen peroxide ANATASE dental implant
下载PDF
Screening the Optimal Patterned Surfaces Consisting of Cell Morphology Mimicking Micro-pillars and Nanotube Arrays for the Design of Titanium Implants#br#
7
作者 Ping Zhou Hongjiao Li +5 位作者 Feifei Mao Hongxin Huang Siqi Long Fei He Jing Chen Shicheng Wei 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第2期361-374,共14页
Micron/nano scale topographic modification has been a significant focus of interest in current titanium(Ti)surface design.However,the influence of micron/nano structured surface on cell or bacterium behavior on the Ti... Micron/nano scale topographic modification has been a significant focus of interest in current titanium(Ti)surface design.However,the influence of micron/nano structured surface on cell or bacterium behavior on the Ti implant has rarely been systematically evaluated.Moreover,except for popular microgrooves,little work has been carried out on the reaction of cells to the bionic structure.In this study,several micro-pillars mimicking cell morphology were prepared on Ti surfaces by lithography and contact printing(ICP)method,and they were further decorated with nanotube arrays by anodization technology.These surface modifications remarkablly increased the surface roughness of pristine Ti surface from 91.17 nm±5.57 nm to be more than 1000 nm,and reduced their water contact angles from 68.3°±0.7°to be 16.9°±2.4°.Then,the effects of these hierarchical micron/nano scale patterns on the behaviors of MG63 osteoblasts,L929 fibroblasts,SCC epithelial cells and P.gingivalis were studied,aiming to evaluate their performance in osseointegration,gingival epithelial sealing and antibacterial ability.Through an innovative scoring strategy,our findings showed that square micro-pillars with 6μm width and 2μm height combined with 85 nm diameter nanotubes was suitable for implant neck design,while square micro-pillars with 3μm width and 3.6μm height combined with 55 nm diameter nanotubes was the best for implant body design.Our study reveals the synergistic effect of the hierarchical micron/nano scale patterns on MG63 osteoblasts,L929 fibroblasts,SCC epithelial cells and P.gingivalis functions.It provides insight into the design of biomedical implant surfaces. 展开更多
关键词 hierarchical micron/nano design cell-like patterns nanotube arrays titanium implants implant osseointegration
原文传递
Effect of Different Titanium Surface Treatments on the Adhesion Test Result:Dental Application
8
作者 Alireza Valanezhad Masayoshi Suzue +4 位作者 Sirus Safaee Mahdis Nesabi Mohammad Khodaei Shigeaki Abe Ikuya Watanabe 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期255-259,共5页
The aim of the study was to investigate the effect of different surface treatment of titanium(Ti)on the adhesion test results for dental application.Ti substrates roughened by 400 to 1500-grit SiC polish papers and al... The aim of the study was to investigate the effect of different surface treatment of titanium(Ti)on the adhesion test results for dental application.Ti substrates roughened by 400 to 1500-grit SiC polish papers and alumina blasting,alkali treated by 5 molar(M)NaOH and KOH solutions and heat treated at the temperature range of 400-800℃were used in this study.The treated samples were subjected to the adhesion test.According to the results of the adhesion test,the adhesive strength showed the highest value for the blasted titanium among all polished and blasted samples.The Ti samples heated at 650℃showed the highest adhesive strength among all heat-treated samples.Further,the adhesion test results indicated the higher adhesive strength of chemically treated samples treated by NaOH rather than that by KOH.The polished and heated Ti samples showed the highest adhesive strength among all samples. 展开更多
关键词 titanium implant surface treatment bonding strength ANATASE RUTILE
下载PDF
Inducing Macrophages M2 Polarization by Dexamethasone Laden Mesoporous Silica Nanoparticles from Titanium Implant Surface for Enhanced Osteogenesis 被引量:2
9
作者 Jing Luo Xin Ding +6 位作者 Wen Song Jian-Ying Bai Jing Liu Zhe Li Fan-Hui Meng Fang-Hao Chen Yu-Mei Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第10期1253-1260,共8页
The study conveys an idea to enhance the osseointegration of titanium implant (Ti) through modulating macrophages M2 polarization. The ?100 nm spherical mesoporous silica nanoparticles (MSN) that compromised of ~4-nm-... The study conveys an idea to enhance the osseointegration of titanium implant (Ti) through modulating macrophages M2 polarization. The ?100 nm spherical mesoporous silica nanoparticles (MSN) that compromised of ~4-nm-diameter nano? tunnels were synthesized by the conventional "sol-gel" method, into which the dexamethasone (DEX) was loaded (DEX@ MSN). The DEX@MSN could consistently release DEX and showed favorable cytocompatibility in RAW264.7 cells. The arginase-1 expression, a specific marker for macrophages M2 polarization, was also enhanced by DEX @ MSN treatment. Then, the Ti was pre-treated with anodization under 5 V to generate the titania nanotubes with ?30 nm diameter (NT-30) and the DEX @ MSN was introduced onto NT-30 surface via electrophoretic deposition, with the aid of chitosan. After optimizing the deposition parameters, the supernatants of RAW264.7 from the decorated implant surface could significantly promote the osteogenic differentiation of murine primary bone marrow mesenchymal stem cells. These findings demonstrate that delivery of DEX from implant surface can modulate the macrophages M2 polarization and result in favorable osteogenesis. 展开更多
关键词 MACROPHAGES POLARIZATION titanium implant OSTEOGENESIS DEXAMETHASONE Mesoporous silica nanoparticles Electrophoretic deposition
原文传递
Animal Modelling of Lumbar Corpectomy and Fusion and in vivo Growth of Spine Supporting Bone by Titanium Cage Implants: An Experimental Study 被引量:1
10
作者 Qingxian Hou,Qingsan Zhu,Yuntao Wu,Ran Li,Dan Li,Yunfeng Zhang,Qing Ruan First Hospital of Jilin University,Changchun 130021,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第4期329-336,共8页
In this study a lumbar spinal fusion animal model is established to assess the effect of spinal fusion cage,and explore theminimum area ratio of titanium cage section to vertebral section that ensures bone healing and... In this study a lumbar spinal fusion animal model is established to assess the effect of spinal fusion cage,and explore theminimum area ratio of titanium cage section to vertebral section that ensures bone healing and biomechanical property.Lumbarcorpectomy was conducted by posterolateral approach with titanium cage implantation combined with plate fixation.Titaniumcages with the same length but different diameters were used.After implantation of titanium cages,the progress of bone healingwas observed and the bone biomechanical properties were measured,including deformation and displacement in axial compression,flexion,extension,and lateral bending motion.The factors affecting the in vivo growth of spine supporting body wereanalyzed.The results show that the area ratio of titanium cage section to vertebral section should reach 1/2 to ensure the bonehealing,sufficient bone intensity and biomechanical properties.Some bone healing indicators,such as BMP,suggest that there isa relationship between the peak time and the peak value of bone formation and metabolism markers and the bone healing strength. 展开更多
关键词 lumbar corpectomy titanium cage implantation spinal fusion BIOMECHANICS bone metabolism markers
下载PDF
Surface modification of titanium using steel slag ball and shot blasting treatment for biomedical implant applications 被引量:3
11
作者 Budi Arifvianto Suyitno Muslim Mahardika 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第8期788-795,共8页
Surface modification is often performed using grit or shot blasting treatment for improving the performances of biomedical implants. The effects of blasting treatments using steel slag balls and spherical shots on the... Surface modification is often performed using grit or shot blasting treatment for improving the performances of biomedical implants. The effects of blasting treatments using steel slag balls and spherical shots on the surface and subsurface of titanium were studied in this paper. The treatments were conducted for 60-300 s using 2-5 mm steel slag bails and 3.18 mm spherical shots. The surface morphology, roughness, and elemental composition of titanium specimens were examined prior to and after the treatments. Irregular and rough titanium surfaces were formed after the treatment with the steel slag balls instead of the spherical shots. The former treatment also introduced some bioactive elements on the titanium surface, but the latter one yielded a harder surface layer. In conclusion, both steel slag ball and shot blasting treatment have their own specialization in modifying the surface of metallic biomaterials. Steel slag ball blasting is potential for improving the osseointegration quality of implants; but the shot blasting is more appropriate for improving the mechanical properties of temporary and load bearing implants, such as osteosynthesis plates. 展开更多
关键词 biomedical implants titanium surface treatment BLASTING
下载PDF
Microstructures and mechanical properties of a new titanium alloy for surgical implant application 被引量:1
12
作者 Jun Li Lian Zhou Zuo-chen Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第2期185-191,共7页
A new titanium alloy Ti12.5Zr2.5Nb2.5Ta(TZNT) for surgical implant application was synthesized and fully annealed at 700℃for 45 min.The microstructure and the mechanical properties such as tensile properties and fa... A new titanium alloy Ti12.5Zr2.5Nb2.5Ta(TZNT) for surgical implant application was synthesized and fully annealed at 700℃for 45 min.The microstructure and the mechanical properties such as tensile properties and fatigue properties were investigated.The results show that TZNT mainly consists of a lot of lamellaα-phase clusters with different orientations distributed in the originalβ-phase grain boundaries and a small amount ofβphases between the lamella a phases.The alloy exhibits better ductility,lower modulus of elasticity,and lower admission strain in comparison with Ti6A14V and Ti6A17Nb,indicating that it has better biomechanical compatibility with human bones.The fatigue limit of TZNT is 333 MPa,at which the specimen has not failed at 10^7 cycles.A large number of striations present in the stable fatigue crack propagation area,and many dimples in the fast fatigue crack propagation area are observed,indicating the ductile fracture of the new alloy. 展开更多
关键词 titanium alloy surgical implant MICROSTRUCTURE mechanical properties FATIGUE
下载PDF
COMPARISON OF SURFACE PROPERTIES OF Ti-6Al-4V COATED WITH TITANIUM NITRIDE, TiN+TiC+Ti(C,N)/DLC, TiN/DLC AND TiC/DLC FILMS BY PLASMA-BASED ION IMPLANTATION 被引量:3
13
作者 Ji, H.B. Xia, L.F. +2 位作者 Ma, X.X. Sun, Y. Sun, M.R. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第4期967-973,共7页
The surface properties of Ti-6Al-4V alloy coated with titanium nitride, TiN+TiC+Ti(C,N)/DLC (diamond like carbon), TiN/DLC and TiC/DLC films by plasma-based ion implantation (PBII) with nitrogen, PBII with nitrogen th... The surface properties of Ti-6Al-4V alloy coated with titanium nitride, TiN+TiC+Ti(C,N)/DLC (diamond like carbon), TiN/DLC and TiC/DLC films by plasma-based ion implantation (PBII) with nitrogen, PBII with nitrogen then acetylene, PBII with nitrogen then glow discharge deposition with acetylene plus hydrogen and PBII with acetylene then glow discharge deposition with acetylene plus hydrogen respectively were studied. The corresponding films are found getting dimmer, showing light gold or gold, smoky color (uneven), light red in black (uneven), and graphite black separately. The corresponding film resistivities are given. Antioxidation ability of the titanium nitride film is poor, while the existence of carbon (or carbide) improves the antioxidation ability of the films. Having undergone excellent intermediate transitional region of nitrogen and carbon implantation, the top DLC layer of the TiN+TiC+Ti(C,N)/DLC multilayer are formed after the carbon implantation has the best adhesion with the substrate among all the multilayers. Although microhardness of the samples increases in the order of coatings of titanium nitride, TiN/DLC, TiN+TiC+Ti(C,N)/DLC and TiC/DLC, the TiN/DLC and TiC/DLC multilayers have greater brittleness as compared with other films. 展开更多
关键词 titanium alloys titanium nitride PLASMAS Ion implantation MICROHARDNESS Surface properties
下载PDF
Imaging and Dosimetric Consideration for Titanium Prosthesis Implanted within the Irradiated Region by Cobalt-60 Teletherapy Unit
14
作者 Vaino Indongo Samuel Nii Adu Tagoe +1 位作者 Kwame Kyere Cyril Schandorf 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2018年第2期160-172,共13页
The aim of this research is to observe dose distributions in the vicinity of titanium prosthetic implants during radiotherapy procedures on 60Co teletherapy machine, Prowess Panther treatment planning system (TPS). Da... The aim of this research is to observe dose distributions in the vicinity of titanium prosthetic implants during radiotherapy procedures on 60Co teletherapy machine, Prowess Panther treatment planning system (TPS). Data were obtained using a locally fabricated tissue equivalent phantom CT images with titanium prosthesis which was irradiated with 60Co gamma radiation. Prowess TPS (1.25 MeV) estimated less variations. Proximal ends of the metal recorded slight increase in doses as a result of backscatter with dose increment below acceptable tolerance of ±3%. Doses measured decreases on the distal side of the prosthesis at a distance less than dmax from the plate on each beam energy. The depth dose increases marginally after a certain depth level which generally originated from the unperturbed dose due to increase in the electron fluence. The percentage of depth doses decrease with the increase in plate thickness. A reduction in the above trend was also noticed with an increase in beam energy primarily because scattered photons are more forwardly directed. Prowess TPS (convolution superposition algorithm) was found to be better at reducing dose variation when correction for artifact. Manual calculations on blue phantom data agree with results from Prowess. This treatment system is capable of simulating dose around titanium prosthesis as its range of densities, 0.00121 to 2.83, excludes titanium density (rED for titanium is 3.74). 展开更多
关键词 PHANTOM Co-60 Dosimetric IMAGING titanium implant PROSTHESIS Prowess PANTHER
下载PDF
Effects of Laser Pulse Numbers on Surface Biocompatibility of Titanium for Implant Fabrication
15
作者 Mitra Radmanesh Amirkianoosh Kiani 《Journal of Biomaterials and Nanobiotechnology》 2015年第3期168-175,共8页
Generally, materials with high biocompatibility are more appropriate for bone and tissue transplant applications, due to their higher effectiveness in the healing process and infection problems. This study presents th... Generally, materials with high biocompatibility are more appropriate for bone and tissue transplant applications, due to their higher effectiveness in the healing process and infection problems. This study presents the effects of laser surface texturing on the surface topography properties, roughness, and wettability of thin titanium sheets, which consequently enhance the biocompatibility of this material. Creating line patterns across the surfaces, the titanium samples are prepared using variety of laser parameters. The apatite inducing ability of each sample is tested through the use of simulated body fluid (SBF). The final biocompatibility level of titanium samples is analyzed through wettability, surface angle measurements, and average surface temperature profile. Overall, the effects of laser parameter, pulse numbers, upon the biocompatibility of titanium are thoroughly examined, with results indicating that a scanning speed of 100 μm/ms results in desirable bone type apatite inducing abilities across the surface of treated titanium sheets. 展开更多
关键词 Laser SURFACE Micro TEXTURING titanium implant Biocompatability Hydroxyapatite Deposition
下载PDF
Fabrication of Micro/Nano-textured Titanium Alloy Implant Surface and Its Infl uence on Hydroxyapatite Coatings
16
作者 张蕊 万熠 +4 位作者 AI Xing MEN Bo WANG Teng LIU Zhanqiang ZHANG Dong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期440-445,共6页
We put forward a protocolcombining laser treatment and acid etching to obtain multiscale micro/nano-texture surfaces of titanium alloy implant.Firstly,the operationalparameters of the laser were optimized to obtain an... We put forward a protocolcombining laser treatment and acid etching to obtain multiscale micro/nano-texture surfaces of titanium alloy implant.Firstly,the operationalparameters of the laser were optimized to obtain an optimum current.Secondly,the laser with the optimum operationalparameters was used to fabricate micro pits.Thirdly,multiple acid etching was used to clean the clinkers of micro pits and generate submicron and nanoscale structures.Finally,the bioactivity of the samples was measured in a simulated body fluid.The results showed that the micropits with a diameter of 150 μm and depth of 50 μm were built successfully with the optimized working current of 13 A.In addition,submicron and nanoscale structures,with 0.5-2 μm microgrooves and 10-20 nm nanopits,were superimposed on micro pits surface by multiple acid etching.There was thick and dense HA coating only observed on the multiscale micro/nano-textured surface compared with polished and micro-textured surface.This indicated that the multiscale micro/nano-texture surface showed better ability toward HA formation,which increased the bioactivity of implants. 展开更多
关键词 titanium alloy implant laser treatment acid etching bioactivity micro/nano-textures
下载PDF
Corrosion behaviors of a new titanium alloy TZNT for surgical implant application in Ringer’s solution
17
作者 LI Jun ZHOU Lian LI Zuochen 《Rare Metals》 SCIE EI CAS CSCD 2010年第1期37-44,共8页
A new near α-titanium alloy Ti12.5Zr2.5Nb2.5Ta (TZNT) for surgical implants was designed. The potentiodynamic technique was performed to investigate the corrosion behaviors of TZNT in Ringer's solution, and Ti6A14... A new near α-titanium alloy Ti12.5Zr2.5Nb2.5Ta (TZNT) for surgical implants was designed. The potentiodynamic technique was performed to investigate the corrosion behaviors of TZNT in Ringer's solution, and Ti6A14V, Ti6Al7Nb, and TA2 were taken as comparison. The structure of the passive film was analyzed using an X-ray photoelectron spectrometer (XPS). The results indicate that TZNT possesses better corrosion resistance, when compared with Ti6A14V, Ti6A17Nb, and TA2. The passive film formed on the TZNT surface is composed of oxides, such as TiO2, ZrO2, Nb2O5, and Ta2O5. The elements Zr and Ta are rich, whereas Ti and Nb are poor in the passive film. The addition of Zr, Nb, and Ta with relatively low electrochemical reaction potentials can reduce the anode activity and improve passive properties. Other than that, oxides such as ZrO2, Nb2O5, and Ta2O5 with the nobler equilibrium constants make the passive film more stable. 展开更多
关键词 titanium alloy surgical implant ELECTROCHEMISTRY passive film corrosion resistance
下载PDF
Evaluation of titanium dental implants after early failure of osseointegration by means of X-ray photoelectron spectoscopy, electron microscopy and histological studies
18
作者 P. Lázaro M. Herrero F. J. Gil 《Journal of Biomedical Science and Engineering》 2010年第11期1073-1077,共5页
In this work, we analysed 56 clinically failed and retrieved implants by means of scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and histological studies. The surface contamination was comp... In this work, we analysed 56 clinically failed and retrieved implants by means of scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and histological studies. The surface contamination was compared to that of unused control implants and with that of the same implants after cleaning in a basic medium. The surfaces of the unused implants presented considerable contamination. In particular, high levels of carbon were detected. The nature of this C was elucidated by XPS analysis of the lubricant used in the machining process. The same contamination was observed in the retrieved implants. Histological studies were carried out by means of light microscopy. Fibrosis and granulomatous lesions were detected in the tissues. XPS analysis indicated the presence of traces of other elements (Na, Ca, Zn, S, F, etc.) that were not related to impurities in cpTi. We examined a cleaning process in a basic medium that eliminates the organic components of the implant surfaces. The cleaned implants were implanted in the patients and the results were excellent. None of the implants failed in following 7 months. 展开更多
关键词 DENTAL implant titanium CONTAMINATION OSSEOINTEGRATION
下载PDF
SURFACE MODIFICATION OF TITANIUM FILMS WITH SODIUM ION IMPLANTATION:SURFACE PROPERTIES AND PROTEIN ADSORPTION
19
作者 K. Y. Cai 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第2期148-156,共9页
Sodium implanted titanium films with different ion doses were characterized to correlate their ion implantation parameters. Native titanium films and ion implanted titanium films were characterized with combined techn... Sodium implanted titanium films with different ion doses were characterized to correlate their ion implantation parameters. Native titanium films and ion implanted titanium films were characterized with combined techniques of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and light microscopy (LM). The surface presented increased sodium concentration on treated titanium films with ion dose increasing, except for the group with the highest ion dose of 4×10^17ions/cm^2. XPS depth profiling displayed that sodium entered titanium film around 25-50nm depth depending on its implantation ion dose. AFM characterization showed that sodium ion implantation treatment changed the surface morphology from a relatively smooth titanium film to rough surfaces corresponding to different implantation doses. After sodium implantation, implanted titanium films presented big particles with island structure morphology. The surface morphology and particle growth displayed the corresponding trend. Fibrinogen adsorption on these titanium films was performed to correlate with the surface properties of treated titanium films. The results show that protein adsorption on ion-implanted samples with dose of 2×10^17 and 4×10^17 are statistically higher (p 〈0.01) than samples treated with dose of 5×10^16 and 1×10^17, as well as the control samples. 展开更多
关键词 titanium film sodium ion implantation protein adsorption surface characterization
下载PDF
Plasma cytokine profiles following subcutaneous implantation of titanium in mice
20
作者 Takashi Oda Hodaka Sasaki +4 位作者 Taichi Ito Hideshi Sekine Tetsuo Kato Masao Yoshinari Yasutomo Yajima 《Journal of Biomedical Science and Engineering》 2013年第9期928-933,共6页
Aims and Objectives: The purpose of this study was to investigate the influence of a titanium implant on immune response in mouse by monitoring change in plasma cytokine profiles. Materials and Methods: C57BL/6 (type ... Aims and Objectives: The purpose of this study was to investigate the influence of a titanium implant on immune response in mouse by monitoring change in plasma cytokine profiles. Materials and Methods: C57BL/6 (type 1 T helper cell-predominant) and BALB/c (type 2 T helper cell-predominant) mice were used. Each type was divided into an experimental and a control group: in the former, pure titanium implants (Φ 1 mm × 1 mm) were inserted into the back of the mice subcutaneously;in the latter, the wound was sutured closed with no insertion of an implant. Blood samples were collected before implantation and at 3 hr, 24 hr, 3 d, 1 mo, and 3 mo after implantation. Levels of IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-17A, IL-23, IFN-γ, TNF-α, and TGF-β1 were measured by multi-analyte enzyme-linked immunosorbent assay. Results: Baseline cytokine levels were generally higher in the BALB/c mice than in their C57BL/6 counterparts. Cytokine levels showed only slight variation after implantation of titanium in ei-ther strain. No statistically significant differences in cytokine levels were detected, except for those of IL-6 and IL-10. Conclusion: The results showed that titanium implantation induced no clear Th1-, Th2-, or Th17-mediated immune response in either Th1-or Th2-predominant mice. 展开更多
关键词 CYTOKINES titanium IMMUNE Response DENTAL implant
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部