Metallic titanium film was deposited on H-13 steel substrate at 470°C - 530°C using plasma enhanced chemical vapor deposition (PECVD) method. In this paper, the effects of manufacturing parameters were inves...Metallic titanium film was deposited on H-13 steel substrate at 470°C - 530°C using plasma enhanced chemical vapor deposition (PECVD) method. In this paper, the effects of manufacturing parameters were investigated on deposited titanium coating characteristics. XRD, FESEM, XPS and AFM were used in order to study coating characteristics. Increasing hydrogen flow rate from 200 to 360 sccm, resulted in a 72% decrease in oxygen content and 38% decrease in chlorine content of the film. Applied plasma voltage has a severe effect on nanohardness of coating. Pressure of the deposition chamber has a negative effect on titanium characteristics.展开更多
We present an enhancement of the fluorescence of shallow(<10 nm) nitrogen-vacancy(NV^-)centers by using atomic layer deposition to deposit titanium oxide layers on the diamond surface. In this way, the shallow NV-c...We present an enhancement of the fluorescence of shallow(<10 nm) nitrogen-vacancy(NV^-)centers by using atomic layer deposition to deposit titanium oxide layers on the diamond surface. In this way, the shallow NV-center charge states were stabilized, leading to the increasing fluorescence intensity of about 2 times. This surface coating technique could produce a protective layer of controllable thickness without any damages to the solid-state quantum system surface, which might be an approach to the further passivation or packaging techniques for the solid-state quantum devices.展开更多
Laser cladding,together with laser nitriding was used to synthesize a titanium nickel intermetallic compound layer on the nickel substrate and a TiN coating on the cladding layer. During the laser cladding, Ti and Ni ...Laser cladding,together with laser nitriding was used to synthesize a titanium nickel intermetallic compound layer on the nickel substrate and a TiN coating on the cladding layer. During the laser cladding, Ti and Ni powders were blown into the melting pool by a six-hole coaxial nozzle powder injection system. Exothermic reactions between Ti and Ni took place in the melting pool, and a cladding layer of titanium nickel intermetallic compounds was produced. Laser nitriding in a nitrogen-rich atmosphere followed the production of the cladding layer, and formed a golden yellow TiN layer over it. An optical and a scanning electron microscope were used to investigate the microstructures and measure the thicknesses of the cladding layer and the TiN layer. Phase identification was carried out by XRD. For the nitriding sample, the microhardness profile of the clad layer was tested. The optimal process parameters of the in situ synthesis of titanium nickel intermetallic compounds were obtained.展开更多
文摘Metallic titanium film was deposited on H-13 steel substrate at 470°C - 530°C using plasma enhanced chemical vapor deposition (PECVD) method. In this paper, the effects of manufacturing parameters were investigated on deposited titanium coating characteristics. XRD, FESEM, XPS and AFM were used in order to study coating characteristics. Increasing hydrogen flow rate from 200 to 360 sccm, resulted in a 72% decrease in oxygen content and 38% decrease in chlorine content of the film. Applied plasma voltage has a severe effect on nanohardness of coating. Pressure of the deposition chamber has a negative effect on titanium characteristics.
基金National Natu- ral Science Foundation of China (No.11374280 and No.50772110). The authors wish to thank Guo-ping Guo, Jie You and Yang Li from the Key Lab of Quan- tum Information for the support of electron beam lithography. We also thank Ming-ling Li at University of Science and Technology of China for the technical support of ALD.
文摘We present an enhancement of the fluorescence of shallow(<10 nm) nitrogen-vacancy(NV^-)centers by using atomic layer deposition to deposit titanium oxide layers on the diamond surface. In this way, the shallow NV-center charge states were stabilized, leading to the increasing fluorescence intensity of about 2 times. This surface coating technique could produce a protective layer of controllable thickness without any damages to the solid-state quantum system surface, which might be an approach to the further passivation or packaging techniques for the solid-state quantum devices.
文摘Laser cladding,together with laser nitriding was used to synthesize a titanium nickel intermetallic compound layer on the nickel substrate and a TiN coating on the cladding layer. During the laser cladding, Ti and Ni powders were blown into the melting pool by a six-hole coaxial nozzle powder injection system. Exothermic reactions between Ti and Ni took place in the melting pool, and a cladding layer of titanium nickel intermetallic compounds was produced. Laser nitriding in a nitrogen-rich atmosphere followed the production of the cladding layer, and formed a golden yellow TiN layer over it. An optical and a scanning electron microscope were used to investigate the microstructures and measure the thicknesses of the cladding layer and the TiN layer. Phase identification was carried out by XRD. For the nitriding sample, the microhardness profile of the clad layer was tested. The optimal process parameters of the in situ synthesis of titanium nickel intermetallic compounds were obtained.