The hot Theological forming method was proposed to form the second titanium alloy vane disk. The hot rheological forming process of the TC11 titanium vane disk under a certain temperature and different strain rates wa...The hot Theological forming method was proposed to form the second titanium alloy vane disk. The hot rheological forming process of the TC11 titanium vane disk under a certain temperature and different strain rates was investigated by using the bulk forming software of DEFORM 3D. A series of results including temperature field, equivalent strain distribution, load-stroke curve and rheology procedure were obtained by this finite element method. The rheological forming characteristics were well realized and the forming parameters were determined. The results and analysis show that with decreasing strain rate, the metal flow more equably and the filling of the vane shape is also better. Moreover, the mechanical properties and microstructures of the products produced by this new technique are improved evidently compared with that produced by traditional method.展开更多
Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerica...Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerical simulation of vacuum hot bulge forming process of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC Marc. The effects of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece were analyzed by numerical simulation. The simulated results show that the Y-direction displacement and the equivalent plastic strain of the workpiece increase with increasing bulge temperature. The residual stress decreases with increasing bulge temperature. The optimal temperature range of BT20 titanium alloy during vacuum hot bulge forming is 750-850 ℃. The corresponding experiments were carried out. The simulated results agreed well with the experimental results.展开更多
基金Project(02103) support by the Education Ministry of China Project(02A008) supported by the Education Department of Hunan Province and Central South University of Foresty & Technology
文摘The hot Theological forming method was proposed to form the second titanium alloy vane disk. The hot rheological forming process of the TC11 titanium vane disk under a certain temperature and different strain rates was investigated by using the bulk forming software of DEFORM 3D. A series of results including temperature field, equivalent strain distribution, load-stroke curve and rheology procedure were obtained by this finite element method. The rheological forming characteristics were well realized and the forming parameters were determined. The results and analysis show that with decreasing strain rate, the metal flow more equably and the filling of the vane shape is also better. Moreover, the mechanical properties and microstructures of the products produced by this new technique are improved evidently compared with that produced by traditional method.
文摘Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerical simulation of vacuum hot bulge forming process of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC Marc. The effects of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece were analyzed by numerical simulation. The simulated results show that the Y-direction displacement and the equivalent plastic strain of the workpiece increase with increasing bulge temperature. The residual stress decreases with increasing bulge temperature. The optimal temperature range of BT20 titanium alloy during vacuum hot bulge forming is 750-850 ℃. The corresponding experiments were carried out. The simulated results agreed well with the experimental results.