The nominal Ti44Al6Nb1.0Cr2.0V alloy was newly designed and prepared by vacuum consumable melting technique with the ingot sizes of d225 mm×320 mm. The results show that the average lamella colony size is 780-18...The nominal Ti44Al6Nb1.0Cr2.0V alloy was newly designed and prepared by vacuum consumable melting technique with the ingot sizes of d225 mm×320 mm. The results show that the average lamella colony size is 780-1830 μm. This as-cast alloy has a modified near lamellar(M-NL) structure that is composed of mainly larger(α2+γ) lamella colonies and smaller(B2+equiaxed γ) blocky morphology. It exhibits the moderate tensile properties at room temperature, in which the Region(5) yields the ultimate tensile strength(UTS) about 499 MPa and the elongation about 0.53%. The obvious brittle fracture characteristics and trans-granular interlamellar fracture are the predominant modes. After room temperature tensile testing, there are some <101] and a few 1/2<112] superdislocations in the γ phase. The as-cast microcrack is the main factor to deteriorate the tensile property, which results in the premature fracture, poor ductility and few dislocations. The addition of Nb, Cr and V can decrease stacking fault energy(SFE) obviously, which is helpful to enhancing the ductility of the alloy.展开更多
The purpose of this paper is to estimate the fatigue crack growth threshold of a high-Nb TiAl alloy at the different temperatures based on scanning electron microscopy (SEM) in-situ observation. The results indicate...The purpose of this paper is to estimate the fatigue crack growth threshold of a high-Nb TiAl alloy at the different temperatures based on scanning electron microscopy (SEM) in-situ observation. The results indicated that the fatigue crack growth threshold △Kth of a nearly lamellar high-Nb TiAl alloy with 8% Nb content at room temperature and 750℃ was determined as 12.89 MPa.m^1/2 and 8.69 MPa.m^1/2, respectively. The effect of the elevated temperature on the fatigue crack growth threshold cannot be ignored. At the same time, the early stage of fatigue crack propagation exhibited multicrack initiation and bridge-link behavior.展开更多
Spherical Ti-45A1-8.5Nb-(W,B,Y) alloy powder prepared by an argon plasma process was near-net shape by gelcasting. In the non-aqueous system, methaerylate-2-hydroxy ethyl, toluene, benzoyl peroxide, and N,N-dimethyl...Spherical Ti-45A1-8.5Nb-(W,B,Y) alloy powder prepared by an argon plasma process was near-net shape by gelcasting. In the non-aqueous system, methaerylate-2-hydroxy ethyl, toluene, benzoyl peroxide, and N,N-dimethylaniline were used as the monomer, solvent, initiator, and catalyst, respectively. To improve sintering and forming behaviors, many additives were included in the suspension. The concentrated suspension with a solid loading of 70vo1% was prepared. The high Nb-TiA1 powder was analyzed by electron microscopy and X-ray diffraction. It was found that the green bodies had a smooth surface and homogeneous microstructure, exhibiting a bending strength as high as 50 MPa. After sintering at 1480℃ for 2 h in vacuum, uniform complex-shaped high Nb-TiA1 parts were successfully produced.展开更多
TiAl-based alloys have received extensive attention recently due to their excellent properties. However, the weak oxidation resistance at temperatures higher than 800℃ can limit their further high-temperature structu...TiAl-based alloys have received extensive attention recently due to their excellent properties. However, the weak oxidation resistance at temperatures higher than 800℃ can limit their further high-temperature structural applications.To improve the oxidation resistance of a high-Nb-content γ-TiAl alloy(Ti-45 Al-8.5 Nb, in units of at.%), a chromium(Cr)coating is prepared by using the plasma surface alloying technique, separately, at 800℃ and 1000℃. The x-ray diffraction(XRD) patterns reveal that an oxide surface layer consisting of Cr2O3, Al2O3, and TiO2 is produced on the Cr-coated Nb containing γ-TiAl substrates during the initial oxidation. However, the Cr2O3 is dominated in the oxide surface layer after being isothermally oxidized for 300 h. The oxidation kinetic curves are composed of a parabolic law stage(≤ 90 h) and a biquadratic law stage(≥ 90 h), fit by weight–gain curves. Due to diffusion in the fabrication process and oxidation process,the Cr-coated specimens have an adhesion force after being isothermally oxidized, specifically 69 N for a specimen after oxidation for 300 h. These results demonstrate that the Cr coating enhances the oxidation resistance and adhesion of a Ti-45 Al-8.5 Nb alloy, which may provide a new feasible scheme for designing oxidation protection layers.展开更多
The transmission electron microscopic morphology of the phases and fatigue crack propagation (FCP) rate of Ti-5Al-2Mo-3Zr alloy were investigated in this study. Microstructure of the alloy consists of α and β phases...The transmission electron microscopic morphology of the phases and fatigue crack propagation (FCP) rate of Ti-5Al-2Mo-3Zr alloy were investigated in this study. Microstructure of the alloy consists of α and β phases after furnace- and air-cooling, and interfacial phase appears at the boundaries between these two phases. After water quenching, the microstructure consists primary of α and h.c.p. martensite α′ which assumes acicular. There are many twins within the α′ plates. No retained β phase exists after quenching from any temperature. During aging, β particles precipitated along the boundaries and inside the martensite plates with Burgers orientation relationship. The fatigue crack propagation rate (low frequency) is not sensitive to the microstructure, tensile strength and rolling direction. Analysis of the fractography shows that main cracks propagated serpentinely and secondary cracks existed everywhere. In high stress intensity range, the resistance of FCP is better than that of Ti-6Al-4V.展开更多
The oxidation performance and tribological properties of the anodized Ti45Al8.5Nb were investigated.Anodization was performed in ethylene glycol containing 0.15 mol/L NH_(4)F.Results showed that the anodized Ti45Al8.5...The oxidation performance and tribological properties of the anodized Ti45Al8.5Nb were investigated.Anodization was performed in ethylene glycol containing 0.15 mol/L NH_(4)F.Results showed that the anodized Ti45Al8.5Nb alloy exhibited good resistance against oxidation.After 100 h oxidation at 1000℃,the mass gain of the anodized Ti45Al8.5Nb alloy was only 0.37 mg/cm^(2).This is attributed to the generation of protective oxide scale.On the other hand,the hardness and elastic modulus of the anodized Ti45Al8.5Nb alloy decreased and then increased with the prolonging of thermal exposure due to the generation of the Al_(2)O_(3)-enriched outermost oxide layer.展开更多
Aluminum silicon titanium master alloys were prepared in the laboratory by electrolysis of silica and titania dissolved in cryolite alumina melts. Alloys containing up to 12 mass% Si and 2.6 mass% Ti were formed af...Aluminum silicon titanium master alloys were prepared in the laboratory by electrolysis of silica and titania dissolved in cryolite alumina melts. Alloys containing up to 12 mass% Si and 2.6 mass% Ti were formed after about 90 min of electrolysis at 950℃. The current efficiency for the preparation of the Al Si Ti alloys varied with time, temperature and cathodic current density. It is concluded that this electrolytic method may be an interesting alternative to the direct metal mixing process for formation of Al Si Ti master alloys.展开更多
The effect of aluminium content and solution heat treatment in α+β phase region on the shape memory characteristics and mechanical properties of cold wrought Cu-Al-Ni-Mn-Ti alloy are studied in this paper. Results i...The effect of aluminium content and solution heat treatment in α+β phase region on the shape memory characteristics and mechanical properties of cold wrought Cu-Al-Ni-Mn-Ti alloy are studied in this paper. Results indicate that the transformation temperature (Tt) of Cu-Al-Ni-Mn-Ti alloy reduces obviously with the increase of the amount of α-phase. During aging at 623 K, Tt increases at first up to a peak value, then decreases with prolongation of aging time. Life time of heat resistance of the alloy at high temperatures is improved with increase of the amount of α-phase, this life time becomes poor with Bainite precipitation. When the amount of α-phase is less than 5%, the ratio of shape recovery brought about by the solution heat treatment in α+β phase region is almost not effected. However, plasticity of the alloy increases obviously as aluminium content decreases. We believe that improving cold workability of Cu-Al-Ni-Mn-Ti alloy and keeping good heat resistant property and shape memory effects are possible by means of reducing the content of aluminium and solulion heat treatment in α+β phase region.展开更多
In this paper, nine new filler metals contained Sn and Ga based on Al 11.5Si have been designed for vacuum brazing of Al/Ti. It is found that the addition of Sn and Ga can lower the solidus of filler metal, change th...In this paper, nine new filler metals contained Sn and Ga based on Al 11.5Si have been designed for vacuum brazing of Al/Ti. It is found that the addition of Sn and Ga can lower the solidus of filler metal, change the structure of intermetallic compound formed in the joint during brazing, and enhance the strength of joint. But the detail mechanism need further research.展开更多
基金Project(2011CB605504)supported by the National Basic Research Program of ChinaProject(NCET-12-0153)supported by the Program of New Century Excellent Talents in UniversityProject(51274076)supported by the National Natural Science Foundation of China
文摘The nominal Ti44Al6Nb1.0Cr2.0V alloy was newly designed and prepared by vacuum consumable melting technique with the ingot sizes of d225 mm×320 mm. The results show that the average lamella colony size is 780-1830 μm. This as-cast alloy has a modified near lamellar(M-NL) structure that is composed of mainly larger(α2+γ) lamella colonies and smaller(B2+equiaxed γ) blocky morphology. It exhibits the moderate tensile properties at room temperature, in which the Region(5) yields the ultimate tensile strength(UTS) about 499 MPa and the elongation about 0.53%. The obvious brittle fracture characteristics and trans-granular interlamellar fracture are the predominant modes. After room temperature tensile testing, there are some <101] and a few 1/2<112] superdislocations in the γ phase. The as-cast microcrack is the main factor to deteriorate the tensile property, which results in the premature fracture, poor ductility and few dislocations. The addition of Nb, Cr and V can decrease stacking fault energy(SFE) obviously, which is helpful to enhancing the ductility of the alloy.
基金financially supported by the National Basic Research Program of China (No.2011CB605506)
文摘The purpose of this paper is to estimate the fatigue crack growth threshold of a high-Nb TiAl alloy at the different temperatures based on scanning electron microscopy (SEM) in-situ observation. The results indicated that the fatigue crack growth threshold △Kth of a nearly lamellar high-Nb TiAl alloy with 8% Nb content at room temperature and 750℃ was determined as 12.89 MPa.m^1/2 and 8.69 MPa.m^1/2, respectively. The effect of the elevated temperature on the fatigue crack growth threshold cannot be ignored. At the same time, the early stage of fatigue crack propagation exhibited multicrack initiation and bridge-link behavior.
基金the National Natural Science Foundation of China(No.51274039)the Guangdong Industry-University-Research Foundation(No.2011A090200091)
文摘Spherical Ti-45A1-8.5Nb-(W,B,Y) alloy powder prepared by an argon plasma process was near-net shape by gelcasting. In the non-aqueous system, methaerylate-2-hydroxy ethyl, toluene, benzoyl peroxide, and N,N-dimethylaniline were used as the monomer, solvent, initiator, and catalyst, respectively. To improve sintering and forming behaviors, many additives were included in the suspension. The concentrated suspension with a solid loading of 70vo1% was prepared. The high Nb-TiA1 powder was analyzed by electron microscopy and X-ray diffraction. It was found that the green bodies had a smooth surface and homogeneous microstructure, exhibiting a bending strength as high as 50 MPa. After sintering at 1480℃ for 2 h in vacuum, uniform complex-shaped high Nb-TiA1 parts were successfully produced.
基金Project supported by the National Natural Science Foundation of China(Grant No.51601122)the 2019–2020 Intergovernmental Cooperation Projects in Science and Technology of the Ministry of Science and Technology,China(Grant No.CB02-03)+3 种基金the Science and Technology Major Project of Shanxi Province,China(Grant No.20181102013)the“331 Project”Engineering Research Center of Shanxi Province,China(Grant No.PT201801)the China Postdoctoral Science Foundation(Grant No.2017M620574)the Fund from the State Key Laboratory of Advanced Metal Materials,China(Grant No.2019-ZD02).
文摘TiAl-based alloys have received extensive attention recently due to their excellent properties. However, the weak oxidation resistance at temperatures higher than 800℃ can limit their further high-temperature structural applications.To improve the oxidation resistance of a high-Nb-content γ-TiAl alloy(Ti-45 Al-8.5 Nb, in units of at.%), a chromium(Cr)coating is prepared by using the plasma surface alloying technique, separately, at 800℃ and 1000℃. The x-ray diffraction(XRD) patterns reveal that an oxide surface layer consisting of Cr2O3, Al2O3, and TiO2 is produced on the Cr-coated Nb containing γ-TiAl substrates during the initial oxidation. However, the Cr2O3 is dominated in the oxide surface layer after being isothermally oxidized for 300 h. The oxidation kinetic curves are composed of a parabolic law stage(≤ 90 h) and a biquadratic law stage(≥ 90 h), fit by weight–gain curves. Due to diffusion in the fabrication process and oxidation process,the Cr-coated specimens have an adhesion force after being isothermally oxidized, specifically 69 N for a specimen after oxidation for 300 h. These results demonstrate that the Cr coating enhances the oxidation resistance and adhesion of a Ti-45 Al-8.5 Nb alloy, which may provide a new feasible scheme for designing oxidation protection layers.
文摘The transmission electron microscopic morphology of the phases and fatigue crack propagation (FCP) rate of Ti-5Al-2Mo-3Zr alloy were investigated in this study. Microstructure of the alloy consists of α and β phases after furnace- and air-cooling, and interfacial phase appears at the boundaries between these two phases. After water quenching, the microstructure consists primary of α and h.c.p. martensite α′ which assumes acicular. There are many twins within the α′ plates. No retained β phase exists after quenching from any temperature. During aging, β particles precipitated along the boundaries and inside the martensite plates with Burgers orientation relationship. The fatigue crack propagation rate (low frequency) is not sensitive to the microstructure, tensile strength and rolling direction. Analysis of the fractography shows that main cracks propagated serpentinely and secondary cracks existed everywhere. In high stress intensity range, the resistance of FCP is better than that of Ti-6Al-4V.
基金financial supports from the National Natural Science Foundation of China (No. 51971205)the Guangdong Basic and Applied Basic Research Foundation, China (No. 2021B1515020056)the Shenzhen Fundamental Research Program, China (No. JCYJ20190807154005593)。
文摘The oxidation performance and tribological properties of the anodized Ti45Al8.5Nb were investigated.Anodization was performed in ethylene glycol containing 0.15 mol/L NH_(4)F.Results showed that the anodized Ti45Al8.5Nb alloy exhibited good resistance against oxidation.After 100 h oxidation at 1000℃,the mass gain of the anodized Ti45Al8.5Nb alloy was only 0.37 mg/cm^(2).This is attributed to the generation of protective oxide scale.On the other hand,the hardness and elastic modulus of the anodized Ti45Al8.5Nb alloy decreased and then increased with the prolonging of thermal exposure due to the generation of the Al_(2)O_(3)-enriched outermost oxide layer.
文摘Aluminum silicon titanium master alloys were prepared in the laboratory by electrolysis of silica and titania dissolved in cryolite alumina melts. Alloys containing up to 12 mass% Si and 2.6 mass% Ti were formed after about 90 min of electrolysis at 950℃. The current efficiency for the preparation of the Al Si Ti alloys varied with time, temperature and cathodic current density. It is concluded that this electrolytic method may be an interesting alternative to the direct metal mixing process for formation of Al Si Ti master alloys.
文摘The effect of aluminium content and solution heat treatment in α+β phase region on the shape memory characteristics and mechanical properties of cold wrought Cu-Al-Ni-Mn-Ti alloy are studied in this paper. Results indicate that the transformation temperature (Tt) of Cu-Al-Ni-Mn-Ti alloy reduces obviously with the increase of the amount of α-phase. During aging at 623 K, Tt increases at first up to a peak value, then decreases with prolongation of aging time. Life time of heat resistance of the alloy at high temperatures is improved with increase of the amount of α-phase, this life time becomes poor with Bainite precipitation. When the amount of α-phase is less than 5%, the ratio of shape recovery brought about by the solution heat treatment in α+β phase region is almost not effected. However, plasticity of the alloy increases obviously as aluminium content decreases. We believe that improving cold workability of Cu-Al-Ni-Mn-Ti alloy and keeping good heat resistant property and shape memory effects are possible by means of reducing the content of aluminium and solulion heat treatment in α+β phase region.
文摘In this paper, nine new filler metals contained Sn and Ga based on Al 11.5Si have been designed for vacuum brazing of Al/Ti. It is found that the addition of Sn and Ga can lower the solidus of filler metal, change the structure of intermetallic compound formed in the joint during brazing, and enhance the strength of joint. But the detail mechanism need further research.