Due to its highly favorable physical and chemical properties,titanium and titanium alloy are widely used in a variety of industries.Because of the low output of a single batch,plate cold rolling without tension is the...Due to its highly favorable physical and chemical properties,titanium and titanium alloy are widely used in a variety of industries.Because of the low output of a single batch,plate cold rolling without tension is the most common rolling production method for titanium alloy.This method is lack of on-line thickness closed-loop control,with carefully thickness setting models for precision.A set of high-precision thickness setting models are proposed to suit the production method.Because of frequent variations in rolling specification,a model structural for the combination of analytical models and statistical models is adopted to replace the traditional self-learning method.The deformation resistance and friction factor,the primary factors which affect model precision,are considered as the objectives of statistical modeling.Firstly,the coefficient fitting of deformation resistance analytical model based on over-determined equations set is adopted.Additionally,a support vector machine(SVM)is applied to the modeling of the deformation resistance and friction factor.The setting models are applied to a 1450 plate-coiling mill for titanium alloy plate rolling,and then thickness precision is found consistently to be within 3%,exceeding the precision of traditional setting models with a self-learning method based on a large number of stable rolling data.Excellent application performance is obtained.The proposed research provides a set of high-precision thickness setting models which are well adapted to the characteristics of titanium alloy plate cold rolling without tension.展开更多
Titanium machining is one of the challenging tasks to modem machining processes. Especially fabricat- ing microfeatures on titanium appear as a potential research interest. Electrochemical micromachining (EMM) is an...Titanium machining is one of the challenging tasks to modem machining processes. Especially fabricat- ing microfeatures on titanium appear as a potential research interest. Electrochemical micromachining (EMM) is an effective process to generate microfeatures by anodic dis- solution. Machining of titanium by anodic dissolution is different than other metals because of its tendency to form passive oxide layer. The phenomenon of progression of microfeature by conversion of passive oxide layer into transpassive has been investigated with the help of mask- less EMM technique. Suitable range of machining voltage has been established to attain the controlled anodic disso- lution of titanium by converting passive oxide film of titanium into transpassive with nonaqueous electrolyte. The experimental outcomes revealed that the micromachining of titanium with controlled anodic dissolution could be possible even at lower machining voltage in the range of 6-8 V. This work successfully explored the possibility of generation of microfeatures on commercially pure titanium by anodic dissolution process in microscopic domain by demonstrating successful fabrication of various microfea- tures, such as microholes and microcantilevers.展开更多
Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising app...Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising application in this field. The outstanding properties lead to challenging machining processes. High strength and low heat conductivity affect high mechanical and thermal loads for the cutting edge. Thus, the machining process is characterized by a rapid development of tool wear even at low cutting parameter. To reach a sufficient productivity it is necessary to dissipate the resulting heat from the cutting edge by a coolant. Therefore the cryogenic machining of two different titanium alloys is investigated in this work. The results point out the different behavior of the machining processes under cryogenic conditions because of the reduced thermal load for the cutting tool. According to this investigation, the cryogenic cooling with COa enables an increase of the tool life in comparison to emulsion based cooling principles when machining the α+β-titanium alloy Ti-6Al-4V. The machining process of the high strength titanium alloy Ti-6Al-2Sn-4Zr-6Mo requires an additional lubrication realized by a minimum quantity lubrication (MQL) with oil. This combined cool- ing leads to a smoother chip underside and to slender shear bands between the different chip segments.展开更多
Titanium(Ti) alloys are widely used in aerospace industry due to the low density and high corrosion resistance. However, machining and polishing remain great challenges because of the hardness and chemical stability. ...Titanium(Ti) alloys are widely used in aerospace industry due to the low density and high corrosion resistance. However, machining and polishing remain great challenges because of the hardness and chemical stability. With a home-made electrochemical machining workstation, cyclic voltammetry is performed at a wide potential range of [0 V, 20 V] to record the details of passivation and depassivation processes under a hydrodynamic mode. The results show that the thickness of viscous layer formed on the alloy surface plays a crucial effect on the electropolishing quality. The technical parameters, including the mechanical motion rate, polishing time and electrode gap, are optimized to achieve a surface roughness less than 1.9 nm, which shows a prospective application in the electrochemical machining of Ti and it alloys.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51304017)National Key Technology R&D Program of the 12th Five-year Plan of China(Grant Nos.2012BAF04B02,2011BAE23B04)Fundamental Research Funds for Central Universities,China(Grant No.FRF-SD-12-013B)
文摘Due to its highly favorable physical and chemical properties,titanium and titanium alloy are widely used in a variety of industries.Because of the low output of a single batch,plate cold rolling without tension is the most common rolling production method for titanium alloy.This method is lack of on-line thickness closed-loop control,with carefully thickness setting models for precision.A set of high-precision thickness setting models are proposed to suit the production method.Because of frequent variations in rolling specification,a model structural for the combination of analytical models and statistical models is adopted to replace the traditional self-learning method.The deformation resistance and friction factor,the primary factors which affect model precision,are considered as the objectives of statistical modeling.Firstly,the coefficient fitting of deformation resistance analytical model based on over-determined equations set is adopted.Additionally,a support vector machine(SVM)is applied to the modeling of the deformation resistance and friction factor.The setting models are applied to a 1450 plate-coiling mill for titanium alloy plate rolling,and then thickness precision is found consistently to be within 3%,exceeding the precision of traditional setting models with a self-learning method based on a large number of stable rolling data.Excellent application performance is obtained.The proposed research provides a set of high-precision thickness setting models which are well adapted to the characteristics of titanium alloy plate cold rolling without tension.
文摘Titanium machining is one of the challenging tasks to modem machining processes. Especially fabricat- ing microfeatures on titanium appear as a potential research interest. Electrochemical micromachining (EMM) is an effective process to generate microfeatures by anodic dis- solution. Machining of titanium by anodic dissolution is different than other metals because of its tendency to form passive oxide layer. The phenomenon of progression of microfeature by conversion of passive oxide layer into transpassive has been investigated with the help of mask- less EMM technique. Suitable range of machining voltage has been established to attain the controlled anodic disso- lution of titanium by converting passive oxide film of titanium into transpassive with nonaqueous electrolyte. The experimental outcomes revealed that the micromachining of titanium with controlled anodic dissolution could be possible even at lower machining voltage in the range of 6-8 V. This work successfully explored the possibility of generation of microfeatures on commercially pure titanium by anodic dissolution process in microscopic domain by demonstrating successful fabrication of various microfea- tures, such as microholes and microcantilevers.
文摘Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising application in this field. The outstanding properties lead to challenging machining processes. High strength and low heat conductivity affect high mechanical and thermal loads for the cutting edge. Thus, the machining process is characterized by a rapid development of tool wear even at low cutting parameter. To reach a sufficient productivity it is necessary to dissipate the resulting heat from the cutting edge by a coolant. Therefore the cryogenic machining of two different titanium alloys is investigated in this work. The results point out the different behavior of the machining processes under cryogenic conditions because of the reduced thermal load for the cutting tool. According to this investigation, the cryogenic cooling with COa enables an increase of the tool life in comparison to emulsion based cooling principles when machining the α+β-titanium alloy Ti-6Al-4V. The machining process of the high strength titanium alloy Ti-6Al-2Sn-4Zr-6Mo requires an additional lubrication realized by a minimum quantity lubrication (MQL) with oil. This combined cool- ing leads to a smoother chip underside and to slender shear bands between the different chip segments.
基金supported by the National Natural Science Foundation of China (91323303, 21327002, 21573054, 21321062)
文摘Titanium(Ti) alloys are widely used in aerospace industry due to the low density and high corrosion resistance. However, machining and polishing remain great challenges because of the hardness and chemical stability. With a home-made electrochemical machining workstation, cyclic voltammetry is performed at a wide potential range of [0 V, 20 V] to record the details of passivation and depassivation processes under a hydrodynamic mode. The results show that the thickness of viscous layer formed on the alloy surface plays a crucial effect on the electropolishing quality. The technical parameters, including the mechanical motion rate, polishing time and electrode gap, are optimized to achieve a surface roughness less than 1.9 nm, which shows a prospective application in the electrochemical machining of Ti and it alloys.