The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X...The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.展开更多
With the rapid development of indium tin oxide(ITO)in the electronic display industry,choosing which raw powders to prepare high-quality ITO targets has always been a controversial topic.In the work,in order to clearl...With the rapid development of indium tin oxide(ITO)in the electronic display industry,choosing which raw powders to prepare high-quality ITO targets has always been a controversial topic.In the work,in order to clearly understand the effect of the raw powders on the microstructure and properties of ITO targets and thin films,tin-doped indium oxide(dITO)and In_(2)O_3-SnO_(2)mixed(mITO)powders were chosen to prepare ITO targets for depositing the films and a comparative study on their microstructure and properties was conducted.It is found that,(1)dITO targets possess a higher solid solubility of tin in indium oxide and more uniform elemental distribution,while there are a higher density,a finer grain size and a higher mass ratio of In_(2)O_3 to SnO_(2)for the mITO targets;(2)dITO films with more coarser columnar grains and a rougher surface prefer to grow along the[100]direction in an Ar atmosphere;(3)the conductive property of ITO films only depends on the doping amount of tin and is independent of the raw powders and the preparation process of the target source;(4)dITO films possess the superior optical property and narrower optical band gap;(5)the etching property of mITO films is superior to that of dITO films due to the lower solid solubility of tin in indium oxide.展开更多
基金financially supported by (i) Suranaree University of Technology,(ii) Thailand Science Research and Innovation,and (iii) National Science,Research and Innovation Fund(project codes 90464 and 160363)。
文摘The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.
基金financially supported by the National Key R&D Program of China(No.2017YFB0305401)the National Natural Science Foundation of China(Nos.51874369 and 51871249)the Huxiang Young Talents Plan(No.2018RS3007)。
文摘With the rapid development of indium tin oxide(ITO)in the electronic display industry,choosing which raw powders to prepare high-quality ITO targets has always been a controversial topic.In the work,in order to clearly understand the effect of the raw powders on the microstructure and properties of ITO targets and thin films,tin-doped indium oxide(dITO)and In_(2)O_3-SnO_(2)mixed(mITO)powders were chosen to prepare ITO targets for depositing the films and a comparative study on their microstructure and properties was conducted.It is found that,(1)dITO targets possess a higher solid solubility of tin in indium oxide and more uniform elemental distribution,while there are a higher density,a finer grain size and a higher mass ratio of In_(2)O_3 to SnO_(2)for the mITO targets;(2)dITO films with more coarser columnar grains and a rougher surface prefer to grow along the[100]direction in an Ar atmosphere;(3)the conductive property of ITO films only depends on the doping amount of tin and is independent of the raw powders and the preparation process of the target source;(4)dITO films possess the superior optical property and narrower optical band gap;(5)the etching property of mITO films is superior to that of dITO films due to the lower solid solubility of tin in indium oxide.