An efficient and compact double-pass optical fiber amplifier is demonstrated using a newly developed hafnia bismuth erbium co-doped fiber(HBEDF) as a gain medium. The HBEDF is fabricated using a modified chemical va...An efficient and compact double-pass optical fiber amplifier is demonstrated using a newly developed hafnia bismuth erbium co-doped fiber(HBEDF) as a gain medium. The HBEDF is fabricated using a modified chemical vapor deposition in conjunction with solution doping. The fiber has an erbium ion concentration of 12500 ppm.At the optimum length of 0.5 m, the HBEDF amplifier(HBEDFA) achieves a flat gain of 26 d B with a gain variation of less than 1.5 d B within a wavelength region from 1530 to 1560 nm when the input signal and pump power are fixed at-30 d Bm and 140 m W, respectively. On the other hand, at the input signal power of-10 d Bm,the HBEDFA also achieves a flat gain of 14.2 d B with a gain variation of less than 2.5 d B within a wide wavelength region from 1525 to 1570 nm. Compared with the conventional zirconia erbium co-doped fiber based amplifier,the proposed HBEDFA obtains a more efficient gain and lower noise figure. For an input signal of-30 d Bm, the gain improvements of 6.2 d B and 4.8 d B are obtained at 1525 nm and 1540 nm, respectively.展开更多
The modeling of rare-earth-doped fiber amplifier is accomplished by utilizing the rate and propagation equations of distinct levels for a laser medium. A complex theoretical model for neodymium (Nd3+), erbium (Er...The modeling of rare-earth-doped fiber amplifier is accomplished by utilizing the rate and propagation equations of distinct levels for a laser medium. A complex theoretical model for neodymium (Nd3+), erbium (Er3+), thulium (Tm3+) and ytterbium (Yb3+) codoped telluride glass fiber covering 0.4--2.0 μm emission spectra is presented. The emission spectra of Nd3+-Er3+-Tm3+-yb3+ codoped telluride fiber are realized with the excitation of both 808 and 980 nm lasers pumped at 500 mW. Numerical methods are used to calculate the emission spectra covering 0.4--2.0 μm. With the Nd3+, Tm3+ and Yb3+ ion concentrations fixed at 2 x 1020 ion/m3, the Er3+ ion concentration optimized to 8 x 10^20 ion/m3 and the fiber length spanning from 0.5 to 2 m, a peak amplified spontaneous emission (ASE) power of 19.8 mW is attainable, and a minimum ASE power of 7.96 mW can also be achieved. The analytical techniques and results indicate that when a telluride codoped fiber with suitable ion concentrations of Nd3+, Er3+, Tm3+ and Yb3+ is excited by both 980 and 808 nm pump lasers, 0.4-2.0 μm emission spectra are attainable for vast optical applications.展开更多
文摘An efficient and compact double-pass optical fiber amplifier is demonstrated using a newly developed hafnia bismuth erbium co-doped fiber(HBEDF) as a gain medium. The HBEDF is fabricated using a modified chemical vapor deposition in conjunction with solution doping. The fiber has an erbium ion concentration of 12500 ppm.At the optimum length of 0.5 m, the HBEDF amplifier(HBEDFA) achieves a flat gain of 26 d B with a gain variation of less than 1.5 d B within a wavelength region from 1530 to 1560 nm when the input signal and pump power are fixed at-30 d Bm and 140 m W, respectively. On the other hand, at the input signal power of-10 d Bm,the HBEDFA also achieves a flat gain of 14.2 d B with a gain variation of less than 2.5 d B within a wide wavelength region from 1525 to 1570 nm. Compared with the conventional zirconia erbium co-doped fiber based amplifier,the proposed HBEDFA obtains a more efficient gain and lower noise figure. For an input signal of-30 d Bm, the gain improvements of 6.2 d B and 4.8 d B are obtained at 1525 nm and 1540 nm, respectively.
基金the National Natural Science Foundation of China(Nos.60377023 and 60672017)the Program for New Century Excellent Talents in Universities(NCET)Shanghai Optical Science and Technology Project(No.05DZ22009)
文摘The modeling of rare-earth-doped fiber amplifier is accomplished by utilizing the rate and propagation equations of distinct levels for a laser medium. A complex theoretical model for neodymium (Nd3+), erbium (Er3+), thulium (Tm3+) and ytterbium (Yb3+) codoped telluride glass fiber covering 0.4--2.0 μm emission spectra is presented. The emission spectra of Nd3+-Er3+-Tm3+-yb3+ codoped telluride fiber are realized with the excitation of both 808 and 980 nm lasers pumped at 500 mW. Numerical methods are used to calculate the emission spectra covering 0.4--2.0 μm. With the Nd3+, Tm3+ and Yb3+ ion concentrations fixed at 2 x 1020 ion/m3, the Er3+ ion concentration optimized to 8 x 10^20 ion/m3 and the fiber length spanning from 0.5 to 2 m, a peak amplified spontaneous emission (ASE) power of 19.8 mW is attainable, and a minimum ASE power of 7.96 mW can also be achieved. The analytical techniques and results indicate that when a telluride codoped fiber with suitable ion concentrations of Nd3+, Er3+, Tm3+ and Yb3+ is excited by both 980 and 808 nm pump lasers, 0.4-2.0 μm emission spectra are attainable for vast optical applications.