CAS 132-2006 formulation background and work courses
Flat panel display technology is maturing alongside the development of science and technology. The prices of flat panel display TV sets are becoming lower ... CAS 132-2006 formulation background and work courses
Flat panel display technology is maturing alongside the development of science and technology. The prices of flat panel display TV sets are becoming lower and lower. Flat panel display TV sets have begun entering the mainstream and are now the first choice of some consumers when making new TV purchases.Display TV Set Installation Service Point Explanation and AnalysisRepair, Retreat and Change Duty Stipulations. Peculiar use conditions, usage environments, and the practical circumstances of user consumption service requirements, etc., were also taken into account on the basis of extensive investigation, testing, and verification.……展开更多
Cybersecurity increasingly relies on machine learning(ML)models to respond to and detect attacks.However,the rapidly changing data environment makes model life-cycle management after deployment essential.Real-time det...Cybersecurity increasingly relies on machine learning(ML)models to respond to and detect attacks.However,the rapidly changing data environment makes model life-cycle management after deployment essential.Real-time detection of drift signals from various threats is fundamental for effectively managing deployed models.However,detecting drift in unsupervised environments can be challenging.This study introduces a novel approach leveraging Shapley additive explanations(SHAP),a widely recognized explainability technique in ML,to address drift detection in unsupervised settings.The proposed method incorporates a range of plots and statistical techniques to enhance drift detection reliability and introduces a drift suspicion metric that considers the explanatory aspects absent in the current approaches.To validate the effectiveness of the proposed approach in a real-world scenario,we applied it to an environment designed to detect domain generation algorithms(DGAs).The dataset was obtained from various types of DGAs provided by NetLab.Based on this dataset composition,we sought to validate the proposed SHAP-based approach through drift scenarios that occur when a previously deployed model detects new data types in an environment that detects real-world DGAs.The results revealed that more than 90%of the drift data exceeded the threshold,demonstrating the high reliability of the approach to detect drift in an unsupervised environment.The proposed method distinguishes itself fromexisting approaches by employing explainable artificial intelligence(XAI)-based detection,which is not limited by model or system environment constraints.In conclusion,this paper proposes a novel approach to detect drift in unsupervised ML settings for cybersecurity.The proposed method employs SHAP-based XAI and a drift suspicion metric to improve drift detection reliability.It is versatile and suitable for various realtime data analysis contexts beyond DGA detection environments.This study significantly contributes to theMLcommunity by addressing the critical issue of managing ML models in real-world cybersecurity settings.Our approach is distinguishable from existing techniques by employing XAI-based detection,which is not limited by model or system environment constraints.As a result,our method can be applied in critical domains that require adaptation to continuous changes,such as cybersecurity.Through extensive validation across diverse settings beyond DGA detection environments,the proposed method will emerge as a versatile drift detection technique suitable for a wide range of real-time data analysis contexts.It is also anticipated to emerge as a new approach to protect essential systems and infrastructures from attacks.展开更多
Nowadays,deepfake is wreaking havoc on society.Deepfake content is created with the help of artificial intelligence and machine learning to replace one person’s likeness with another person in pictures or recorded vid...Nowadays,deepfake is wreaking havoc on society.Deepfake content is created with the help of artificial intelligence and machine learning to replace one person’s likeness with another person in pictures or recorded videos.Although visual media manipulations are not new,the introduction of deepfakes has marked a breakthrough in creating fake media and information.These manipulated pic-tures and videos will undoubtedly have an enormous societal impact.Deepfake uses the latest technology like Artificial Intelligence(AI),Machine Learning(ML),and Deep Learning(DL)to construct automated methods for creating fake content that is becoming increasingly difficult to detect with the human eye.Therefore,automated solutions employed by DL can be an efficient approach for detecting deepfake.Though the“black-box”nature of the DL system allows for robust predictions,they cannot be completely trustworthy.Explainability is thefirst step toward achieving transparency,but the existing incapacity of DL to explain its own decisions to human users limits the efficacy of these systems.Though Explainable Artificial Intelligence(XAI)can solve this problem by inter-preting the predictions of these systems.This work proposes to provide a compre-hensive study of deepfake detection using the DL method and analyze the result of the most effective algorithm with Local Interpretable Model-Agnostic Explana-tions(LIME)to assure its validity and reliability.This study identifies real and deepfake images using different Convolutional Neural Network(CNN)models to get the best accuracy.It also explains which part of the image caused the model to make a specific classification using the LIME algorithm.To apply the CNN model,the dataset is taken from Kaggle,which includes 70 k real images from the Flickr dataset collected by Nvidia and 70 k fake faces generated by StyleGAN of 256 px in size.For experimental results,Jupyter notebook,TensorFlow,Num-Py,and Pandas were used as software,InceptionResnetV2,DenseNet201,Incep-tionV3,and ResNet152V2 were used as CNN models.All these models’performances were good enough,such as InceptionV3 gained 99.68%accuracy,ResNet152V2 got an accuracy of 99.19%,and DenseNet201 performed with 99.81%accuracy.However,InceptionResNetV2 achieved the highest accuracy of 99.87%,which was verified later with the LIME algorithm for XAI,where the proposed method performed the best.The obtained results and dependability demonstrate its preference for detecting deepfake images effectively.展开更多
Owing to the convenience of online loans,an increasing number of people are borrowing money on online platforms.With the emergence of machine learning technology,predicting loan defaults has become a popular topic.How...Owing to the convenience of online loans,an increasing number of people are borrowing money on online platforms.With the emergence of machine learning technology,predicting loan defaults has become a popular topic.However,machine learning models have a black-box problem that cannot be disregarded.To make the prediction model rules more understandable and thereby increase the user’s faith in the model,an explanatory model must be used.Logistic regression,decision tree,XGBoost,and LightGBM models are employed to predict a loan default.The prediction results show that LightGBM and XGBoost outperform logistic regression and decision tree models in terms of the predictive ability.The area under curve for LightGBM is 0.7213.The accuracies of LightGBM and XGBoost exceed 0.8.The precisions of LightGBM and XGBoost exceed 0.55.Simultaneously,we employed the local interpretable model-agnostic explanations approach to undertake an explainable analysis of the prediction findings.The results show that factors such as the loan term,loan grade,credit rating,and loan amount affect the predicted outcomes.展开更多
文摘 CAS 132-2006 formulation background and work courses
Flat panel display technology is maturing alongside the development of science and technology. The prices of flat panel display TV sets are becoming lower and lower. Flat panel display TV sets have begun entering the mainstream and are now the first choice of some consumers when making new TV purchases.Display TV Set Installation Service Point Explanation and AnalysisRepair, Retreat and Change Duty Stipulations. Peculiar use conditions, usage environments, and the practical circumstances of user consumption service requirements, etc., were also taken into account on the basis of extensive investigation, testing, and verification.……
基金supported by the Institute of Information and Communications Technology Planning and Evaluation(IITP)grant funded by the Korean government(MSIT)(No.2022-0-00089,Development of clustering and analysis technology to identify cyber attack groups based on life cycle)the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade,Industry and Energy of Korean government under Grant No.21-CM-EC-07.
文摘Cybersecurity increasingly relies on machine learning(ML)models to respond to and detect attacks.However,the rapidly changing data environment makes model life-cycle management after deployment essential.Real-time detection of drift signals from various threats is fundamental for effectively managing deployed models.However,detecting drift in unsupervised environments can be challenging.This study introduces a novel approach leveraging Shapley additive explanations(SHAP),a widely recognized explainability technique in ML,to address drift detection in unsupervised settings.The proposed method incorporates a range of plots and statistical techniques to enhance drift detection reliability and introduces a drift suspicion metric that considers the explanatory aspects absent in the current approaches.To validate the effectiveness of the proposed approach in a real-world scenario,we applied it to an environment designed to detect domain generation algorithms(DGAs).The dataset was obtained from various types of DGAs provided by NetLab.Based on this dataset composition,we sought to validate the proposed SHAP-based approach through drift scenarios that occur when a previously deployed model detects new data types in an environment that detects real-world DGAs.The results revealed that more than 90%of the drift data exceeded the threshold,demonstrating the high reliability of the approach to detect drift in an unsupervised environment.The proposed method distinguishes itself fromexisting approaches by employing explainable artificial intelligence(XAI)-based detection,which is not limited by model or system environment constraints.In conclusion,this paper proposes a novel approach to detect drift in unsupervised ML settings for cybersecurity.The proposed method employs SHAP-based XAI and a drift suspicion metric to improve drift detection reliability.It is versatile and suitable for various realtime data analysis contexts beyond DGA detection environments.This study significantly contributes to theMLcommunity by addressing the critical issue of managing ML models in real-world cybersecurity settings.Our approach is distinguishable from existing techniques by employing XAI-based detection,which is not limited by model or system environment constraints.As a result,our method can be applied in critical domains that require adaptation to continuous changes,such as cybersecurity.Through extensive validation across diverse settings beyond DGA detection environments,the proposed method will emerge as a versatile drift detection technique suitable for a wide range of real-time data analysis contexts.It is also anticipated to emerge as a new approach to protect essential systems and infrastructures from attacks.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R193)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.Taif University Researchers Supporting Project(TURSP-2020/26),Taif University,Taif,Saudi Arabia.
文摘Nowadays,deepfake is wreaking havoc on society.Deepfake content is created with the help of artificial intelligence and machine learning to replace one person’s likeness with another person in pictures or recorded videos.Although visual media manipulations are not new,the introduction of deepfakes has marked a breakthrough in creating fake media and information.These manipulated pic-tures and videos will undoubtedly have an enormous societal impact.Deepfake uses the latest technology like Artificial Intelligence(AI),Machine Learning(ML),and Deep Learning(DL)to construct automated methods for creating fake content that is becoming increasingly difficult to detect with the human eye.Therefore,automated solutions employed by DL can be an efficient approach for detecting deepfake.Though the“black-box”nature of the DL system allows for robust predictions,they cannot be completely trustworthy.Explainability is thefirst step toward achieving transparency,but the existing incapacity of DL to explain its own decisions to human users limits the efficacy of these systems.Though Explainable Artificial Intelligence(XAI)can solve this problem by inter-preting the predictions of these systems.This work proposes to provide a compre-hensive study of deepfake detection using the DL method and analyze the result of the most effective algorithm with Local Interpretable Model-Agnostic Explana-tions(LIME)to assure its validity and reliability.This study identifies real and deepfake images using different Convolutional Neural Network(CNN)models to get the best accuracy.It also explains which part of the image caused the model to make a specific classification using the LIME algorithm.To apply the CNN model,the dataset is taken from Kaggle,which includes 70 k real images from the Flickr dataset collected by Nvidia and 70 k fake faces generated by StyleGAN of 256 px in size.For experimental results,Jupyter notebook,TensorFlow,Num-Py,and Pandas were used as software,InceptionResnetV2,DenseNet201,Incep-tionV3,and ResNet152V2 were used as CNN models.All these models’performances were good enough,such as InceptionV3 gained 99.68%accuracy,ResNet152V2 got an accuracy of 99.19%,and DenseNet201 performed with 99.81%accuracy.However,InceptionResNetV2 achieved the highest accuracy of 99.87%,which was verified later with the LIME algorithm for XAI,where the proposed method performed the best.The obtained results and dependability demonstrate its preference for detecting deepfake images effectively.
基金supported by Fundamental Research Funds for the Central Universities(WUT:2022IVA067).
文摘Owing to the convenience of online loans,an increasing number of people are borrowing money on online platforms.With the emergence of machine learning technology,predicting loan defaults has become a popular topic.However,machine learning models have a black-box problem that cannot be disregarded.To make the prediction model rules more understandable and thereby increase the user’s faith in the model,an explanatory model must be used.Logistic regression,decision tree,XGBoost,and LightGBM models are employed to predict a loan default.The prediction results show that LightGBM and XGBoost outperform logistic regression and decision tree models in terms of the predictive ability.The area under curve for LightGBM is 0.7213.The accuracies of LightGBM and XGBoost exceed 0.8.The precisions of LightGBM and XGBoost exceed 0.55.Simultaneously,we employed the local interpretable model-agnostic explanations approach to undertake an explainable analysis of the prediction findings.The results show that factors such as the loan term,loan grade,credit rating,and loan amount affect the predicted outcomes.