期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Developing transgenic maize(Zea mays L.) with insect resistance and glyphosate tolerance by fusion gene transformation 被引量:2
1
作者 SUN He LANG Zhi-hong +5 位作者 LU Wei ZHANG Jie HE Kang-lai ZHU Li LIN Min HUANG Da-fang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第2期305-313,共9页
Using linker peptide LP4/2A for multiple gene transformation is considered to be an effective method to stack or pyramid several traits in plants. Bacillus thuringiensis(Bt) cry gene and epsps(5-enolpyruvylshikimat... Using linker peptide LP4/2A for multiple gene transformation is considered to be an effective method to stack or pyramid several traits in plants. Bacillus thuringiensis(Bt) cry gene and epsps(5-enolpyruvylshikimate-3-phosphate synthase) gene are two important genes for culturing pest-resistant and glyphosate-tolerant crops. We used linker peptide LP4/2A to connect the Bt cry1 Ah gene with the 2m G2-epsps gene and combined the wide-used man A gene as a selective marker to construct one coordinated expression vector called p2 EPUHLAGN. The expression vector was transferred into maize by Agrobacterium tumefaciens-mediated transformation, and 60 plants were obtained, 40% of which were positive transformants. Molecular detection demonstrated that the two genes in the fusion vector were expressed simultaneously and spliced correctly in translation processing; meanwhile bioassay detection proved the transgenic maize had preferable pest resistance and glyphosate tolerance. Therefore, linker peptide LP4/2A provided a simple and reliable strategy for producing gene stacking in maize and the result showed that the fusion gene transformation system of LP4/2A was feasible in monocot plants. 展开更多
关键词 LP4/2A gene stacking transgenic maize insect resistance glyphosate tolerance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部