Objective:MiRNAs have been recently implicated in the pathogenesis of ischemia-reperfusion(IR)injury.This study aimed to investigate the miRNA expression profiles,in the early stages after lung transplantation(LT)and ...Objective:MiRNAs have been recently implicated in the pathogenesis of ischemia-reperfusion(IR)injury.This study aimed to investigate the miRNA expression profiles,in the early stages after lung transplantation(LT)and to study the involvement of the Toll-like receptor(TLR)signaling pathway in lung IR injury following LT.Methods:We established the left LT model in mice and selected the miRNA-122 as a research target.The mice were injected with a miRNA-122-specific inhibitor,following which pathological changes in the lung tissue were studied using different lung injury indicators.In addition,we performed deep sequencing of transplanted lung tissues to identify differentially expressed(DE)miRNAs and their target genes.These target genes were used to further perform gene ontology(GO)enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis.Results:A total of 12 DE miRNAs were selected,and 2476 target genes were identified.The GO enrichment analysis predicted 6063 terms,and the KEGG analysis predicted 1554 biological pathways.Compared with the control group,inhibiting the expression of miRNA-122 significantly reduced the lung injury and lung wet/dry ratio(P<0.05).In addition,the activity of myeloperoxidase and the expression levels of tumor necrosis factor-alpha and TLR2/4 were decreased(P<0.05);whereas the expression of interleukin-10 was increased(P<0.05).Furthermore,the inhibition of miRNA-122 suppressed the IR injury-induced activation of the TLR signaling pathway.Conclusion:Our findings showed the differential expression of several miRNAs in the early inflammatory response following LT.Of these,miRNA-122 promoted IR injury following LT,whereas its inhibition prevented IR injury in a TLR-dependent manner.展开更多
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, th...The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive. In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure. AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats. Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 exoression.展开更多
Objective To explore the effect and mechanism of Chaihu Longgu Muli Decoction(柴胡龙骨牡蛎汤,CHLGMLD)in rats with temporal lobe epilepsy(TLE).Methods A total of 80 Sprague-Dawley(SD)male rats were randomized into cont...Objective To explore the effect and mechanism of Chaihu Longgu Muli Decoction(柴胡龙骨牡蛎汤,CHLGMLD)in rats with temporal lobe epilepsy(TLE).Methods A total of 80 Sprague-Dawley(SD)male rats were randomized into control(CON),model(MOD),carbamazepine(CBZ,0.1 g/kg),CHLGMLD low dose(CHLGMLD-L,12.5 g/kg),and high dose(CHLGMLD-H,25 g/kg)groups,with 16 rats in each group.TLE rat models were established in the four groups with the use of lithium-pilocarpine except for the CON group.After the successful establishment of TLE models,all drugs were administered through gavage,and distilled water was given to rats in the CON and MOD groups for four weeks.The frequency and duration of seizures before and after treatment were recorded for the evaluation of the alleviation degree.Quantitative real-time polymerase chain reaction(qRT-PCR)was used to detect the expression levels of miR-146a-3p and miR-146a-5p.The expression levels of toll-like receptor 4(TLR4),interleukin-1 receptor-associated kinase 1(IRAK1),tumor necrosis factor(TNF)receptor-associated factor 6(TRAF6),TAK1-binding protein(TAB),nuclear factor-kappa B(NF-κB),and interleukin-1 beta(IL-1β)in hippocampus were tested by immunofluorescence assay.Correlation analysis between the above factors and expressions of miR-146a-3p and miR-146a-5p were performed separately.Results CHLGMLD decreased the frequency(P<0.05)and duration(P<0.01)of seizures in rats.CHLGMLD down-regulated the expression levels of miR-146a-5p and miR-146a-3p(P<0.05),and inhibited the expression levels of TLR4,IRAK1,TRAF6,TAB,NF-κB,and IL-1β(P<0.01).The correlation analysis revealed that the expression levels of TLR4,IRAK1,TRAF6,TAB,NF-κB,and IL-1β were positively correlated with the expression levels of miR-146a-3p and miR-146a-5p detected by qRT-PCR,respectively(P<0.01).Conclusion CHLGMLD can inhibite the TLR4 signaling pathway by lowering the expression levels of miR-146a-3p and miR-146a-5p to alleviate hippocampal dentate gyrus inflammation in TLE rats,thus relieving seizures.展开更多
Cerebral neuroinflammation models were established by injecting 10μg lipopolysaccharide into the hippocampus of male Sprague-Dawley rats. The rats were treated with an intraperitoneal injection of 120, 90, or 60 mg/k...Cerebral neuroinflammation models were established by injecting 10μg lipopolysaccharide into the hippocampus of male Sprague-Dawley rats. The rats were treated with an intraperitoneal injection of 120, 90, or 60 mg/kg oxymatrine daily for three days prior to the lipopolysaccharide injection. Twenty-four hours after model induction, the hippocampus was analyzed by real-time quantitative PCR, and the cerebral cortex was analyzed by enzyme-linked immunosorbent assay and western blot assay. The results of the enzyme-linked immunosorbent assay and the real-time quantitative PCR showed that the secretion and mRNA expression of the pro-inflammatory cytokines interleukin-113 and tumor necrosis factor-a were significantly decreased in the hippocampus and cerebral cortex of model rats treated with oxymatrine. Western blot assay and real-time quantitative PCR analysis indicated that toll-like receptor 4 mRNA and protein expression were significantly decreased in the groups receiving different doses of oxymatrine. Additionally, 120 and 90 mg/kg oxymatrine were shown to reduce protein levels of nuclear factor-KB p65 in the nucleus and of phosphorylated IKBa in the cytoplasm of brain cells, as detected by western blot assay. Experimental findings indicate that oxymatrine may inhibit neuroinflammation in rat brain via downregulating the expression of molecules in the toll-like receptor 4/nuclear factor-KB signaling Dathwav.展开更多
Background: Mastitis, an infection caused by Gram-positive bacteria, produces udder inflammation and oxidative injury in milk-producing mammals. Toll-like receptor 2(TLR2) is important for host recognition of invad...Background: Mastitis, an infection caused by Gram-positive bacteria, produces udder inflammation and oxidative injury in milk-producing mammals. Toll-like receptor 2(TLR2) is important for host recognition of invading Grampositive microbes. Over-expression of TLR2 in transgenic dairy goats is a useful model for studying various aspects of infection with Gram-positive bacteria, in vivo.Methods: We over-expressed TLR2 in transgenic dairy goats. Pam3CSK4, a component of Gram-positive bacteria,triggered the TLR2 signal pathway by stimulating the monocytes-macrophages from the TLR2-positive transgenic goats, and induced over-expression of activator protein-1(AP-1), phosphatidylinositol 3-kinase(PI3K) and transcription factor nuclear factor kappa B(NF-κB) and inflammation factors downstream of the signal pathway.Results: Compared with wild-type controls, measurements of various oxidative stress-related molecules showed that TLR2, when over-expressed in transgenic goat monocytes-macrophages, resulted in weak lipid damage, high level expression of anti-oxidative stress proteins, and significantly increased m RNA levels of transcription factor NF-E2-related factor-2(Nrf2) and the downstream gene, heme oxygenase-1(HO-1). When Pam3CSK4 was used to stimulate ear tissue in vivo the HO-1 protein of the transgenic goats had a relatively high expression level.Conclusions: The results indicate that the oxidative injury in goats over-expressing TLR2 was reduced following Pam3CSK4 stimulation. The underlying mechanism for this reduction was increased expression of the anti-oxidation gene HO-1 by activation of the Nrf2 signal pathway.展开更多
Avian infectious bronchitis virus(IBV) is a Gammacoronavirus in the family Coronaviridae and causes highly contagious respiratory disease in chickens. Innate immunity plays significant roles in host defense against IB...Avian infectious bronchitis virus(IBV) is a Gammacoronavirus in the family Coronaviridae and causes highly contagious respiratory disease in chickens. Innate immunity plays significant roles in host defense against IBV. Here, we explored the interaction between IBV and the host innate immune system. Severe histopathological lesions were observed in the tracheal mucosa at 3–5days post inoculation(dpi) and in the kidney at 8 dpi, with heavy viral loads at 1–11 and 1–28 dpi,respectively. The expression of m RNAs encoding Toll-like receptor(TLR) 3 and TLR7 were upregulated at 3–8 dpi, and that of TIR-domain-containing adapter-inducing interferon(IFN) β(TRIF) was upregulated at 21 dpi in the trachea and kidney. Myeloid differentiation primary response protein 88(My D88) was upregulated in the trachea during early infection. Tumor necrosis factor receptor-associated factor(TRAF) 3 and TRAF6 were upregulated expression in both tissues.Moreover, melanoma differentiation-associated protein 5(MDA5), laboratory of genetics and physiology 2(LGP2), stimulator of IFN genes(STING), and mitochondrial antiviral signaling protein(MAVS), as well as TANK binding kinase 1(TBK1), inhibitor of kappa B kinase(IKK) ?, IKKα, IKKβ,IFN regulatory factor(IRF) 7, nuclear factor of kappa B(NF-κB), IFN-α, IFN-β, various interleukins(ILs), and macrophage inflammatory protein-1β(MIP-1β) were significantly upregulated in the trachea and downregulated in the kidney. These results suggested that the TLR and MDA5 signaling pathways and innate immune cytokine were induced after IBV infection. Additionally,consistent responses to IBV infection were observed during early infection, with differential and complicated responses in the kidney.展开更多
Toll-like receptors sense invading pathogens by recognizing a wide variety of conserved pathogen-associated molecular patterns(PAMPs).The members of the TLR family selectively utilize adaptor proteins MyD88,TRIF,TIRAP...Toll-like receptors sense invading pathogens by recognizing a wide variety of conserved pathogen-associated molecular patterns(PAMPs).The members of the TLR family selectively utilize adaptor proteins MyD88,TRIF,TIRAP and TRAM to activate overlapping but distinct signal transduction pathways which trigger production of different panels of mediators such as proinflammatory cytokines and type I interferon.These mediators not only control innate immunity but also direct subsequently developed adaptive immunity.TLR activation is strictly and finely regulated at multiple levels of the signal transduction pathways.展开更多
Objective:To investigate whether electroacupuncture(EA)alleviates cognitive impairment by suppressing the toll-like receptor 4(TLR4)/myeloid differentiation factor 88(MyD88)signaling pathway,which triggers immune-infl...Objective:To investigate whether electroacupuncture(EA)alleviates cognitive impairment by suppressing the toll-like receptor 4(TLR4)/myeloid differentiation factor 88(MyD88)signaling pathway,which triggers immune-inflammatory responses in the hippocampus of rats with vascular dementia(VaD).Methods:The experiments were conducted in 3 parts and in total the Sprague-Dawley rats were randomly divided into 8 groups by a random number table,including sham,four-vessel occlusion(4-VO),4-VO+EA,4-VO+non-EA,sham+EA,4-VO+lipopolysaccharide(LPS),4-VO+LPS+EA,and 4-VO+TAK-242 groups.The VaD model was established by the 4-VO method.Seven days later,rats were treated with EA at 5 acupoints of Baihui(DV 20),Danzhong(RN 17),Geshu(BL 17),Qihai(RN 6)and Sanyinjiao(SP 6),once per day for 3 consecutive weeks.Lymphocyte subsets,lymphocyte transformation rates,and inflammatory cytokines interleukin-6(IL-6)and tumor necrosis factorα(TNF-α)were measured to assess immune function and inflammation in VaD rats.Transmission electron microscopy was used to observe the ultrastructure of nerve cells in the hippocampus.The levels of TLR4,MyD88,IL-6,and TNF-αwere detected after EA treatment.TLR4/MyD88 signaling and cognitive function were also assessed after intracerebroventricular injection of TLR4 antagonist TAK-242 or TLR4 agonist LPS with or without EA.Results:Compared with the 4-VO group,EA notably improved immune function of rats in the 4-VO+EA group,inhibited the protein and mRNA expressions of TLR4 and MyD88 in the hippocampus of rats,reduced the expressions of serum IL-6 and TNF-α(all P<0.05 or P<0.01),and led to neuronal repair in the hippocampus.There were no significant differences between the 4-VO+LPS+EA and 4-VO+EA groups,nor between the 4-VO+TAK-242 and 4-VO+EA groups(P>0.05).Conclusions:EA attenuated cognitive impairment associated with immune inflammation by inhibition of the TLR4/MyD88 signaling pathway.Thus,EA may be a promising alternative therapy for the treatment of VaD.展开更多
The outcome of hepatitis B viral(HBV)infection is determined by the complex interactions between replicating HBV and the immune system.While the role of the adaptive immune system in the resolution of HBV infection ha...The outcome of hepatitis B viral(HBV)infection is determined by the complex interactions between replicating HBV and the immune system.While the role of the adaptive immune system in the resolution of HBV infection has been studied extensively,the contribution of innate immune mechanisms remains to be defined.Here we examined the role of the interleukin-1 receptor/Toll-like receptor(IL-1R/TLR)signaling pathway in adaptive immune responses and viral clearance by exploring the HBV mouse model.Hydrodynamic injection with a replication-competent HBV genome was performed in wild-type mice(WT)and a panel of mouse strains lacking specific innate immunity component expression.We found higher levels of HBV protein production and replication in Tlr2^(−/−),Tlr23479^(−/−),3d/Tlr24^(−/−),Myd88/Trif^(−/−)and Irak4^(−/−)mice,which was associated with reduced HBV-specific CD8+T-cell responses in these mice.Importantly,HBV clearance was delayed for more than 2 weeks in 3d/Tlr24^(−/−),Myd88/Trif^(−/−)and Irak4^(−/−)mice compared to WT mice.HBV-specific CD8+T-cell responses were functionally impaired for producing the cytokines IFN-γ,TNF-αand IL-2 in TLR signaling-deficient mice compared to WT mice.In conclusion,the IL-1R/TLR signaling pathway might contribute to controlling HBV infection by augmenting HBV-specific CD8+T-cell responses.展开更多
Mycoplasmas, the smallest free-living, self-replicating bacteria with diameters of 200 to 800 nm, have been reported to be associated with human diseases. It is well known that the mycoplasma lipoprotein/peptide is ab...Mycoplasmas, the smallest free-living, self-replicating bacteria with diameters of 200 to 800 nm, have been reported to be associated with human diseases. It is well known that the mycoplasma lipoprotein/peptide is able to modulate the host immune system, whose N-terminal structure is an important factor in inducing immunity and distinguishing Toll-like receptors (TLRs). However, there is still no clear elucidation about the pathogenic mechanism of mycoplasma lipoprotein/peptide and the signaling pathway. Some researchers have focused on understanding the structures of these proteins and the relationships between their structure and biological function. This review provides an update on the research in this field.展开更多
Systemic sclerosis (SSc) is a multisystem fibrotic and autoimmune disease. Both genetic and epigenetic elements mediate SSc pathophysiology. This review summarizes the role of one epigenetic element, known as microR...Systemic sclerosis (SSc) is a multisystem fibrotic and autoimmune disease. Both genetic and epigenetic elements mediate SSc pathophysiology. This review summarizes the role of one epigenetic element, known as microRNAs (miRNAs), involved in different signaling pathways of SSc pathogenesis. The expression of key components in transforming growth factor-β (TGF-β) signaling pathway has been found to be regulated by miRNAs both upstream and downstream of TGF-β. We are specifically interested in the pathway components upstream of TGF-β, while miRNAs in other signaling pathways have not been extensively studied. The emerging role of miRNAs in vasculopathy of SSc suggests a promising new direction for future investigation. Elu- cidation of the regulatory role of miRNAs in the expression of signaling factors may facilitate the discovery of novel biomarkers in SSc and improve the understanding and treatment of this disease.展开更多
Objective: To investigate the mechanism of inflammatory-mediated toll-like receptor 4(TLR4)-p38 mitogen-activated protein kinase(p38 MAPK) pathway in Kupffer cells(KCs) of non-alcoholic steatohepatitis(NASH) rats and ...Objective: To investigate the mechanism of inflammatory-mediated toll-like receptor 4(TLR4)-p38 mitogen-activated protein kinase(p38 MAPK) pathway in Kupffer cells(KCs) of non-alcoholic steatohepatitis(NASH) rats and the intervention effect of soothing Gan(Liver) and invigorating Pi(Spleen) recipes on this pathway. Methods: After 1 week of acclimatization, 120 Sprague-Dawley male rats were randomly divided into 8 groups using a random number table(n=15 per group): normal group, model group, low-dose Chaihu Shugan Powder(柴胡疏肝散, CHSG) group(3.2 g/kg), high-dose CHSG group(9.6 g/kg), low-dose Shenling Baizhu Powder(参苓白术散, SLBZ) group(10 g/kg), high-dose SLBZ(30 g/kg) group, and low-and highdose integrated recipe(L-IR, H-IR) groups. All rats in the model and treatment groups were fed with a high-fat diet(HFD). The treatments were administrated by gastrogavage once daily and lasted for 26 weeks. The liver tissues were detected with hematoxylin-eosin(HE) and oil red O staining. Levels of liver lipids, serum lipids and transaminases were measured. KCs were isolated from the livers of rats to evaluate the mRNA expressions of TLR4 and p38 MAPK by real-time fluorescence quantitative polymerase chain reaction, and proteins expressions of TLR4, p-p38 MAPK and p38 MAPK by Western blot. Levels of inflammatory cytokines including tumor necrosis factor α(TNF-α), interleukin(IL)-1 and IL-6 in KCs were measured by enzyme-linked immunosorbent assay. Results: After 26 weeks of HFD feeding, HE and oil red O staining showed that the NASH model rats successfully reproduced typical pathogenesis and histopathological features. Compared with the normal group, the model group exhibited significant increases in body weight, liver weight, liver index, serum levels of total cholesterol(TC), triglyceride(TG), low-density lipoprotein cholesterol, and aspartate aminotransferase as well as TC and TG levels in liver tissues, and significant decrease in serum level of high-density lipoprotein cholesterol(P<0.05 or P<0.01), while those indices were significantly ameliorated in the H-IR group(P<0.05 or P<0.01). Higher levels of TNF-α, IL-1 and IL-6 in KCs were observed in the model group compared with the normal group(P<0.01). Significant decreases in TNF-α, IL-1 and IL-6 were observed in the H-SLBZ, H-IR and L-IR groups compared with the model group(P<0.05 or P<0.01). The m RNA expressions of TLR4 and p38 MAPK and protein expressions of TLR4, p38 MAPK and p-p38 MAPK in KCs in the model group were significantly higher than the normal group(P<0.01), while those expression levels in the L-IR and H-IR groups were significantly lower than the model group(P<0.05 or P<0.01). Conclusions: Inflammation in KCs might play an important role in the pathogenesis of NASH in rats. The data demonstrated the importance of TLR4-p38 MAPK signaling pathway in KCs for the anti-inflammatory effect of soothing Gan and invigorating Pi recipes.展开更多
The syndrome of dampness stagnancy due to spleen deficiency(DSSD)is relatively common globally.Although the pathogenesis of DSSD remains unclear,evidence has suggested that the gut microbiota might play a significant ...The syndrome of dampness stagnancy due to spleen deficiency(DSSD)is relatively common globally.Although the pathogenesis of DSSD remains unclear,evidence has suggested that the gut microbiota might play a significant role.Radix Astragali,used as both medicine and food,exerts the effects of tonifying spleen and qi.Astragalus polysaccharide(APS)comprises a macromolecule substance extracted from the dried root of Radix Astragali,which has many pharmacological functions.However,whether APS mitigates the immune disorders underlying the DSSD syndrome via regulating gut microbiota and the relevant mechanism remains unknown.Here,we used DSSD rats induced by high-fat and low-protein(HFLP)diet plus exhaustive swimming,and found that APS of moderate molecular weight increased the body weight gain and immune organ indexes,decreased the levels of interleukin-1β(IL-1β),IL-6,and endotoxin,and suppressed the Toll-like receptor 4/nuclear factor-κB(TLR4/NF-κB)pathway.Moreover,a total of 27 critical genera were significantly enriched according to the linear discriminant analysis effect size(LEfSe).APS increased the diversity of the gut microbiota and changed its composition,such as reducing the relative abundance of Pseudoflavonifractor and Paraprevotella,and increasing that of Parasutterella,Parabacteroides,Clostridium XIVb,Oscillibacter,Butyricicoccus,and Dorea.APS also elevated the contents of short-chain fatty acids(SCFAs).Furthermore,the correlation analysis indicated that 12 critical bacteria were related to the body weight gain and immune organ indexes.In general,our study demonstrated that APS ameliorated the immune disorders in DSSD rats via modulating their gut microbiota,especially for some bacteria involving immune and inflammatory response and SCFA production,as well as the TLR4/NF-κB pathway.This study provides an insight into the function of APS as a unique potential prebiotic through exerting systemic activities in treating DSSD.展开更多
BACKGROUND Acute lung injury(ALI)and its final severe stage,acute respiratory distress syndrome,are associated with high morbidity and mortality rates in patients due to the lack of effective specific treatments.Gut m...BACKGROUND Acute lung injury(ALI)and its final severe stage,acute respiratory distress syndrome,are associated with high morbidity and mortality rates in patients due to the lack of effective specific treatments.Gut microbiota homeostasis,including that in ALI,is important for human health.Evidence suggests that the gut microbiota improves lung injury through the lung-gut axis.Human umbilical cord mesenchymal cells(HUC-MSCs)have attractive prospects for ALI treatment.This study hypothesized that HUC-MSCs improve ALI via the lung-gut microflora.AIM To explore the effects of HUC-MSCs on lipopolysaccharide(LPS)-induced ALI in mice and the involvement of the lung-gut axis in this process.METHODS C57BL/6 mice were randomly divided into four groups(18 rats per group):Sham,sham+HUC-MSCs,LPS,and LPS+HUC-MSCs.ALI was induced in mice by intraperitoneal injections of LPS(10 mg/kg).After 6 h,mice were intervened with 0.5 mL phosphate buffered saline(PBS)containing 1×10^(6) HUC-MSCs by intraperitoneal injections.For the negative control,100 mL 0.9%NaCl and 0.5 mL PBS were used.Bronchoalveolar lavage fluid(BALF)was obtained from anesthetized mice,and their blood,lungs,ileum,and feces were obtained by an aseptic technique following CO_(2) euthanasia.Wright’s staining,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,Evans blue dye leakage assay,immunohistochemistry,fluorescence in situ hybridization,western blot,16S rDNA sequencing,and non-targeted metabolomics were used to observe the effect of HUC-MSCs on ALI mice,and the involvement of the lung-gut axis in this process was explored.One-way analysis of variance with post-hoc Tukey’s test,independent-sample Student’s t-test,Wilcoxon rank-sum test,and Pearson correlation analysis were used for statistical analyses.RESULTS HUC-MSCs were observed to improve pulmonary edema and lung and ileal injury,and decrease mononuclear cell and neutrophil counts,protein concentrations in BALF and inflammatory cytokine levels in the serum,lung,and ileum of ALI mice.Especially,HUC-MSCs decreased Evans blue concentration and Toll-like receptor 4,myeloid differentiation factor 88,p-nuclear factor kappa-B(NF-κB)/NF-κB,and p-inhibitorαof NF-κB(p-IκBα)/IκBαexpression levels in the lung,and raised the pulmonary vascular endothelial-cadherin,zonula occludens-1(ZO-1),and occludin levels and ileal ZO-1,claudin-1,and occludin expression levels.HUC-MSCs improved gut and BALF microbial homeostases.The number of pathogenic bacteria decreased in the BALF of ALI mice treated with HUCMSCs.Concurrently,the abundances of Oscillospira and Coprococcus in the feces of HUS-MSC-treated ALI mice were significantly increased.In addition,Lactobacillus,Bacteroides,and unidentified_Rikenellaceae genera appeared in both feces and BALF.Moreover,this study performed metabolomic analysis on the lung tissue and identified five upregulated metabolites and 11 downregulated metabolites in the LPS+MSC group compared to the LPS group,which were related to the purine metabolism and the taste transduction signaling pathways.Therefore,an intrinsic link between lung metabolite levels and BALF flora homeostasis was established.CONCLUSION This study suggests that HUM-MSCs attenuate ALI by redefining the gut and lung microbiota.展开更多
Objective:To study the key target genes and signaling pathways in the treatment of Allergic Rhinitis(AR)with Radix Aconiti Lateralis Preparata(aka Fuzi).Methods:The TCMPS and PubChem databases were used to screen the ...Objective:To study the key target genes and signaling pathways in the treatment of Allergic Rhinitis(AR)with Radix Aconiti Lateralis Preparata(aka Fuzi).Methods:The TCMPS and PubChem databases were used to screen the active ingredients and target genes of Fuzi using oral bioavailability and drug similarity as screening conditions,and the GeneCards database was used to screen the target genes of AR.The online tool Venny2.1 was used to screen the target genes of Fuzi for the treatment of Allergic Rhinitis;the STRING database was used to obtain the protein-protein interaction(PPI)network of drug-disease targets,and the key target genes were identified by the MCC algorithm.The potential biological processes and signaling pathways were identified by GO enrichment and KEGG enrichment analysis.Finally,animal experiments were conducted to demonstrate the therapeutic effect ofFuzi on Allergic Rhinitis.Results:The TCMSP,PubChem and GeneCards databases were used to screen the 21 active compound components of Fuzi and 68 potential therapeutic target genes of Fuzi for Allergic Rhinitis.PPI network analysis identified the top ten key target genes,namely:PTGS2,TNF,IL6,AKT1,ALB,STAT3,CCL2,CXCL8,VEGFA and JUN,GO functional and KEGG pathway enrichment analysis showed that the significantly enriched functions and pathways of Fuzi on Allergic Rhinitis were closely related to Allergic Rhinitis.Finally,animal experiments were conducted to verify that Fuzi is effective in the treatment of Allergic rhinitis.Conclusion:Increased expression of IL-6 and TNF-αin nasal mucosal tissues of patients with Allergic Rhinitis was positively correlated with indicators related to the disease activity of AllergicRhinitis.Fuzi ameliorated the inflammatory changes in mice with Allergic Rhinitis by inhibiting the activation of Toll-like signaling pathway in the nasal mucosa and decreasing the expression activity of IL-6 and TNF-α.展开更多
HEp-2 cells persistently infected with respiratory syncytial virus(RSV) are a heterogeneous mixture of viral antigen-positive and-negative variants; however, the mechanism through which viral replication becomes laten...HEp-2 cells persistently infected with respiratory syncytial virus(RSV) are a heterogeneous mixture of viral antigen-positive and-negative variants; however, the mechanism through which viral replication becomes latent remains unclear. In this study, we investigated the potential mechanism by which RSV escapes from innate immune surveillance. Persistent-infected RSV HEp-2 cells were isolated and cell clones were passaged. The RSV-persistent cells produced viruses at a lower titer, resisted wild-type RSV re-infection, and secreted high levels of interferon-β(IFN-β), macrophage inflammatory protein-1α(Mip-1α), interleukin-8(IL-8), and Rantes. Toll-like receptor 3(TLR3), retinoic acid inducible gene-I(RIG-I), and suppressor of cytokine signaling 1(SOCS1) levels were upregulated in these cells. The silencing of TLR3 m RNA decreased the expression of SOCS1 protein and the secretion of cytokines. RSV-persistent cells are in an inflammatory state; upregulation of SOCS1 is related to the TLR3 signaling pathway, which could be associated with the mechanism of viral persistence.展开更多
Although microRNA-155(miR-155)is considered a pro-inflammatory mediator,cumulative evidence indicates that it also has anti-inflammatory effects in macrophages and dendritic cells.In this study,we identified the drama...Although microRNA-155(miR-155)is considered a pro-inflammatory mediator,cumulative evidence indicates that it also has anti-inflammatory effects in macrophages and dendritic cells.In this study,we identified the dramatic expression changes of more than half of potential miR-155-targeted genes upon lipopolysaccharide(LPS)stimulation;223 genes were down-regulated and 85 genes were up-regulated,including suppressor of cytokine signaling 1(SOCS1)and transforming growth factor-β-activated kinase 1-binding protein 2(TAB2),two well-known genes involved in miR-155-mediated regulation of the Toll-like receptor 4(TLR4)signaling pathway.We also found that miR-155 acted as an anti-inflammatory mediator in the initial stage of LPS-induced inflammatory response mainly through repressing TAB2 protein translation,and as a proinflammatory mediator by down-regulating SOCS1 in the later stage.Meanwhile,overexpression of TAB23'untranslated region(UTR)in macrophages promoted the development of endotoxin tolerance by competing for binding with miR-155,which resulted in an elevated expression level of SOCS1 protein.These findings provide new insights for understanding the regulatory mechanisms in fine-tuning of LPS-induced innate immune response.展开更多
基金supported by grants from the National Natural Science Foundation of China(No.81600074)Hubei Natural Science Foundation(No.2017CFB473).
文摘Objective:MiRNAs have been recently implicated in the pathogenesis of ischemia-reperfusion(IR)injury.This study aimed to investigate the miRNA expression profiles,in the early stages after lung transplantation(LT)and to study the involvement of the Toll-like receptor(TLR)signaling pathway in lung IR injury following LT.Methods:We established the left LT model in mice and selected the miRNA-122 as a research target.The mice were injected with a miRNA-122-specific inhibitor,following which pathological changes in the lung tissue were studied using different lung injury indicators.In addition,we performed deep sequencing of transplanted lung tissues to identify differentially expressed(DE)miRNAs and their target genes.These target genes were used to further perform gene ontology(GO)enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis.Results:A total of 12 DE miRNAs were selected,and 2476 target genes were identified.The GO enrichment analysis predicted 6063 terms,and the KEGG analysis predicted 1554 biological pathways.Compared with the control group,inhibiting the expression of miRNA-122 significantly reduced the lung injury and lung wet/dry ratio(P<0.05).In addition,the activity of myeloperoxidase and the expression levels of tumor necrosis factor-alpha and TLR2/4 were decreased(P<0.05);whereas the expression of interleukin-10 was increased(P<0.05).Furthermore,the inhibition of miRNA-122 suppressed the IR injury-induced activation of the TLR signaling pathway.Conclusion:Our findings showed the differential expression of several miRNAs in the early inflammatory response following LT.Of these,miRNA-122 promoted IR injury following LT,whereas its inhibition prevented IR injury in a TLR-dependent manner.
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.
文摘The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive. In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure. AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats. Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 exoression.
基金National Natural Science Foundation of China(81874429)Natural Science Foundation of Hunan Province(2020JJ5294)+3 种基金Traditional Chinese Medicine Science&Research Project of Hunan Province(202145)Excellent Youth Program of Hunan Education Department(21B0081)Hunan Provincial Administration of Traditional Chinese Medicine(D2022027)Changsha Natural Science Foundation of China(KQ2202255).
文摘Objective To explore the effect and mechanism of Chaihu Longgu Muli Decoction(柴胡龙骨牡蛎汤,CHLGMLD)in rats with temporal lobe epilepsy(TLE).Methods A total of 80 Sprague-Dawley(SD)male rats were randomized into control(CON),model(MOD),carbamazepine(CBZ,0.1 g/kg),CHLGMLD low dose(CHLGMLD-L,12.5 g/kg),and high dose(CHLGMLD-H,25 g/kg)groups,with 16 rats in each group.TLE rat models were established in the four groups with the use of lithium-pilocarpine except for the CON group.After the successful establishment of TLE models,all drugs were administered through gavage,and distilled water was given to rats in the CON and MOD groups for four weeks.The frequency and duration of seizures before and after treatment were recorded for the evaluation of the alleviation degree.Quantitative real-time polymerase chain reaction(qRT-PCR)was used to detect the expression levels of miR-146a-3p and miR-146a-5p.The expression levels of toll-like receptor 4(TLR4),interleukin-1 receptor-associated kinase 1(IRAK1),tumor necrosis factor(TNF)receptor-associated factor 6(TRAF6),TAK1-binding protein(TAB),nuclear factor-kappa B(NF-κB),and interleukin-1 beta(IL-1β)in hippocampus were tested by immunofluorescence assay.Correlation analysis between the above factors and expressions of miR-146a-3p and miR-146a-5p were performed separately.Results CHLGMLD decreased the frequency(P<0.05)and duration(P<0.01)of seizures in rats.CHLGMLD down-regulated the expression levels of miR-146a-5p and miR-146a-3p(P<0.05),and inhibited the expression levels of TLR4,IRAK1,TRAF6,TAB,NF-κB,and IL-1β(P<0.01).The correlation analysis revealed that the expression levels of TLR4,IRAK1,TRAF6,TAB,NF-κB,and IL-1β were positively correlated with the expression levels of miR-146a-3p and miR-146a-5p detected by qRT-PCR,respectively(P<0.01).Conclusion CHLGMLD can inhibite the TLR4 signaling pathway by lowering the expression levels of miR-146a-3p and miR-146a-5p to alleviate hippocampal dentate gyrus inflammation in TLE rats,thus relieving seizures.
基金supported by a project of the Priority Academic Program Development of Jiangsu Higher Education InstitutionsApplied Research and Technology Plan of Nantong City, No. k2010036+2 种基金2011 Jiangsu Graduated Students' Research and Innovation Program, No. CX2211-0640Nantong University Graduated Students' Technological and Innovative Program, No. YKC11033Students' Practice Innovative Training Project of Nantong University
文摘Cerebral neuroinflammation models were established by injecting 10μg lipopolysaccharide into the hippocampus of male Sprague-Dawley rats. The rats were treated with an intraperitoneal injection of 120, 90, or 60 mg/kg oxymatrine daily for three days prior to the lipopolysaccharide injection. Twenty-four hours after model induction, the hippocampus was analyzed by real-time quantitative PCR, and the cerebral cortex was analyzed by enzyme-linked immunosorbent assay and western blot assay. The results of the enzyme-linked immunosorbent assay and the real-time quantitative PCR showed that the secretion and mRNA expression of the pro-inflammatory cytokines interleukin-113 and tumor necrosis factor-a were significantly decreased in the hippocampus and cerebral cortex of model rats treated with oxymatrine. Western blot assay and real-time quantitative PCR analysis indicated that toll-like receptor 4 mRNA and protein expression were significantly decreased in the groups receiving different doses of oxymatrine. Additionally, 120 and 90 mg/kg oxymatrine were shown to reduce protein levels of nuclear factor-KB p65 in the nucleus and of phosphorylated IKBa in the cytoplasm of brain cells, as detected by western blot assay. Experimental findings indicate that oxymatrine may inhibit neuroinflammation in rat brain via downregulating the expression of molecules in the toll-like receptor 4/nuclear factor-KB signaling Dathwav.
基金supported by grants from National Transgenic Creature Breeding Grand Project(2014ZX08008-005)Chinese Universities Scientific Fund(2014BH032)Natural Science Foundation of China(31501953, 31471352, 31471400 and 31171380)
文摘Background: Mastitis, an infection caused by Gram-positive bacteria, produces udder inflammation and oxidative injury in milk-producing mammals. Toll-like receptor 2(TLR2) is important for host recognition of invading Grampositive microbes. Over-expression of TLR2 in transgenic dairy goats is a useful model for studying various aspects of infection with Gram-positive bacteria, in vivo.Methods: We over-expressed TLR2 in transgenic dairy goats. Pam3CSK4, a component of Gram-positive bacteria,triggered the TLR2 signal pathway by stimulating the monocytes-macrophages from the TLR2-positive transgenic goats, and induced over-expression of activator protein-1(AP-1), phosphatidylinositol 3-kinase(PI3K) and transcription factor nuclear factor kappa B(NF-κB) and inflammation factors downstream of the signal pathway.Results: Compared with wild-type controls, measurements of various oxidative stress-related molecules showed that TLR2, when over-expressed in transgenic goat monocytes-macrophages, resulted in weak lipid damage, high level expression of anti-oxidative stress proteins, and significantly increased m RNA levels of transcription factor NF-E2-related factor-2(Nrf2) and the downstream gene, heme oxygenase-1(HO-1). When Pam3CSK4 was used to stimulate ear tissue in vivo the HO-1 protein of the transgenic goats had a relatively high expression level.Conclusions: The results indicate that the oxidative injury in goats over-expressing TLR2 was reduced following Pam3CSK4 stimulation. The underlying mechanism for this reduction was increased expression of the anti-oxidation gene HO-1 by activation of the Nrf2 signal pathway.
基金supported by grants from the Natural Science Foundation of China (31360611 and 31160516)Guangxi Natural Science Foundation (2013GXNSFCA01 9010 and 2014GXNSFDA118011)
文摘Avian infectious bronchitis virus(IBV) is a Gammacoronavirus in the family Coronaviridae and causes highly contagious respiratory disease in chickens. Innate immunity plays significant roles in host defense against IBV. Here, we explored the interaction between IBV and the host innate immune system. Severe histopathological lesions were observed in the tracheal mucosa at 3–5days post inoculation(dpi) and in the kidney at 8 dpi, with heavy viral loads at 1–11 and 1–28 dpi,respectively. The expression of m RNAs encoding Toll-like receptor(TLR) 3 and TLR7 were upregulated at 3–8 dpi, and that of TIR-domain-containing adapter-inducing interferon(IFN) β(TRIF) was upregulated at 21 dpi in the trachea and kidney. Myeloid differentiation primary response protein 88(My D88) was upregulated in the trachea during early infection. Tumor necrosis factor receptor-associated factor(TRAF) 3 and TRAF6 were upregulated expression in both tissues.Moreover, melanoma differentiation-associated protein 5(MDA5), laboratory of genetics and physiology 2(LGP2), stimulator of IFN genes(STING), and mitochondrial antiviral signaling protein(MAVS), as well as TANK binding kinase 1(TBK1), inhibitor of kappa B kinase(IKK) ?, IKKα, IKKβ,IFN regulatory factor(IRF) 7, nuclear factor of kappa B(NF-κB), IFN-α, IFN-β, various interleukins(ILs), and macrophage inflammatory protein-1β(MIP-1β) were significantly upregulated in the trachea and downregulated in the kidney. These results suggested that the TLR and MDA5 signaling pathways and innate immune cytokine were induced after IBV infection. Additionally,consistent responses to IBV infection were observed during early infection, with differential and complicated responses in the kidney.
文摘Toll-like receptors sense invading pathogens by recognizing a wide variety of conserved pathogen-associated molecular patterns(PAMPs).The members of the TLR family selectively utilize adaptor proteins MyD88,TRIF,TIRAP and TRAM to activate overlapping but distinct signal transduction pathways which trigger production of different panels of mediators such as proinflammatory cytokines and type I interferon.These mediators not only control innate immunity but also direct subsequently developed adaptive immunity.TLR activation is strictly and finely regulated at multiple levels of the signal transduction pathways.
基金the National Natural Science Foundation of China(No.81960811)the Major Research Project of Innovation Group of Guizhou Provincial Department of Education(No.2018KY023)。
文摘Objective:To investigate whether electroacupuncture(EA)alleviates cognitive impairment by suppressing the toll-like receptor 4(TLR4)/myeloid differentiation factor 88(MyD88)signaling pathway,which triggers immune-inflammatory responses in the hippocampus of rats with vascular dementia(VaD).Methods:The experiments were conducted in 3 parts and in total the Sprague-Dawley rats were randomly divided into 8 groups by a random number table,including sham,four-vessel occlusion(4-VO),4-VO+EA,4-VO+non-EA,sham+EA,4-VO+lipopolysaccharide(LPS),4-VO+LPS+EA,and 4-VO+TAK-242 groups.The VaD model was established by the 4-VO method.Seven days later,rats were treated with EA at 5 acupoints of Baihui(DV 20),Danzhong(RN 17),Geshu(BL 17),Qihai(RN 6)and Sanyinjiao(SP 6),once per day for 3 consecutive weeks.Lymphocyte subsets,lymphocyte transformation rates,and inflammatory cytokines interleukin-6(IL-6)and tumor necrosis factorα(TNF-α)were measured to assess immune function and inflammation in VaD rats.Transmission electron microscopy was used to observe the ultrastructure of nerve cells in the hippocampus.The levels of TLR4,MyD88,IL-6,and TNF-αwere detected after EA treatment.TLR4/MyD88 signaling and cognitive function were also assessed after intracerebroventricular injection of TLR4 antagonist TAK-242 or TLR4 agonist LPS with or without EA.Results:Compared with the 4-VO group,EA notably improved immune function of rats in the 4-VO+EA group,inhibited the protein and mRNA expressions of TLR4 and MyD88 in the hippocampus of rats,reduced the expressions of serum IL-6 and TNF-α(all P<0.05 or P<0.01),and led to neuronal repair in the hippocampus.There were no significant differences between the 4-VO+LPS+EA and 4-VO+EA groups,nor between the 4-VO+TAK-242 and 4-VO+EA groups(P>0.05).Conclusions:EA attenuated cognitive impairment associated with immune inflammation by inhibition of the TLR4/MyD88 signaling pathway.Thus,EA may be a promising alternative therapy for the treatment of VaD.
基金grants from the Deutsche Forschungsgemeinschaft(DFG Transregio TRR60 and GRK1045/2).
文摘The outcome of hepatitis B viral(HBV)infection is determined by the complex interactions between replicating HBV and the immune system.While the role of the adaptive immune system in the resolution of HBV infection has been studied extensively,the contribution of innate immune mechanisms remains to be defined.Here we examined the role of the interleukin-1 receptor/Toll-like receptor(IL-1R/TLR)signaling pathway in adaptive immune responses and viral clearance by exploring the HBV mouse model.Hydrodynamic injection with a replication-competent HBV genome was performed in wild-type mice(WT)and a panel of mouse strains lacking specific innate immunity component expression.We found higher levels of HBV protein production and replication in Tlr2^(−/−),Tlr23479^(−/−),3d/Tlr24^(−/−),Myd88/Trif^(−/−)and Irak4^(−/−)mice,which was associated with reduced HBV-specific CD8+T-cell responses in these mice.Importantly,HBV clearance was delayed for more than 2 weeks in 3d/Tlr24^(−/−),Myd88/Trif^(−/−)and Irak4^(−/−)mice compared to WT mice.HBV-specific CD8+T-cell responses were functionally impaired for producing the cytokines IFN-γ,TNF-αand IL-2 in TLR signaling-deficient mice compared to WT mice.In conclusion,the IL-1R/TLR signaling pathway might contribute to controlling HBV infection by augmenting HBV-specific CD8+T-cell responses.
基金Project (No. 30770115) supported by the National Natural Science Foundation of China
文摘Mycoplasmas, the smallest free-living, self-replicating bacteria with diameters of 200 to 800 nm, have been reported to be associated with human diseases. It is well known that the mycoplasma lipoprotein/peptide is able to modulate the host immune system, whose N-terminal structure is an important factor in inducing immunity and distinguishing Toll-like receptors (TLRs). However, there is still no clear elucidation about the pathogenic mechanism of mycoplasma lipoprotein/peptide and the signaling pathway. Some researchers have focused on understanding the structures of these proteins and the relationships between their structure and biological function. This review provides an update on the research in this field.
基金supported by Hunan Provincial Natural Science Foundation of China(Grant No.12JJ3106)Hunan Development and Reform Commission of China(Grant No.[2012]1493)Central South University of China(Grant No.2012QNZT106)
文摘Systemic sclerosis (SSc) is a multisystem fibrotic and autoimmune disease. Both genetic and epigenetic elements mediate SSc pathophysiology. This review summarizes the role of one epigenetic element, known as microRNAs (miRNAs), involved in different signaling pathways of SSc pathogenesis. The expression of key components in transforming growth factor-β (TGF-β) signaling pathway has been found to be regulated by miRNAs both upstream and downstream of TGF-β. We are specifically interested in the pathway components upstream of TGF-β, while miRNAs in other signaling pathways have not been extensively studied. The emerging role of miRNAs in vasculopathy of SSc suggests a promising new direction for future investigation. Elu- cidation of the regulatory role of miRNAs in the expression of signaling factors may facilitate the discovery of novel biomarkers in SSc and improve the understanding and treatment of this disease.
基金Supported by the National Natural Science Foundation of China(No.30973694)
文摘Objective: To investigate the mechanism of inflammatory-mediated toll-like receptor 4(TLR4)-p38 mitogen-activated protein kinase(p38 MAPK) pathway in Kupffer cells(KCs) of non-alcoholic steatohepatitis(NASH) rats and the intervention effect of soothing Gan(Liver) and invigorating Pi(Spleen) recipes on this pathway. Methods: After 1 week of acclimatization, 120 Sprague-Dawley male rats were randomly divided into 8 groups using a random number table(n=15 per group): normal group, model group, low-dose Chaihu Shugan Powder(柴胡疏肝散, CHSG) group(3.2 g/kg), high-dose CHSG group(9.6 g/kg), low-dose Shenling Baizhu Powder(参苓白术散, SLBZ) group(10 g/kg), high-dose SLBZ(30 g/kg) group, and low-and highdose integrated recipe(L-IR, H-IR) groups. All rats in the model and treatment groups were fed with a high-fat diet(HFD). The treatments were administrated by gastrogavage once daily and lasted for 26 weeks. The liver tissues were detected with hematoxylin-eosin(HE) and oil red O staining. Levels of liver lipids, serum lipids and transaminases were measured. KCs were isolated from the livers of rats to evaluate the mRNA expressions of TLR4 and p38 MAPK by real-time fluorescence quantitative polymerase chain reaction, and proteins expressions of TLR4, p-p38 MAPK and p38 MAPK by Western blot. Levels of inflammatory cytokines including tumor necrosis factor α(TNF-α), interleukin(IL)-1 and IL-6 in KCs were measured by enzyme-linked immunosorbent assay. Results: After 26 weeks of HFD feeding, HE and oil red O staining showed that the NASH model rats successfully reproduced typical pathogenesis and histopathological features. Compared with the normal group, the model group exhibited significant increases in body weight, liver weight, liver index, serum levels of total cholesterol(TC), triglyceride(TG), low-density lipoprotein cholesterol, and aspartate aminotransferase as well as TC and TG levels in liver tissues, and significant decrease in serum level of high-density lipoprotein cholesterol(P<0.05 or P<0.01), while those indices were significantly ameliorated in the H-IR group(P<0.05 or P<0.01). Higher levels of TNF-α, IL-1 and IL-6 in KCs were observed in the model group compared with the normal group(P<0.01). Significant decreases in TNF-α, IL-1 and IL-6 were observed in the H-SLBZ, H-IR and L-IR groups compared with the model group(P<0.05 or P<0.01). The m RNA expressions of TLR4 and p38 MAPK and protein expressions of TLR4, p38 MAPK and p-p38 MAPK in KCs in the model group were significantly higher than the normal group(P<0.01), while those expression levels in the L-IR and H-IR groups were significantly lower than the model group(P<0.05 or P<0.01). Conclusions: Inflammation in KCs might play an important role in the pathogenesis of NASH in rats. The data demonstrated the importance of TLR4-p38 MAPK signaling pathway in KCs for the anti-inflammatory effect of soothing Gan and invigorating Pi recipes.
基金supported by the National Natural Science Foundation of China(No.81903947)the Key Research and Development Project of Shandong Province(No.2019GSF108209),China.
文摘The syndrome of dampness stagnancy due to spleen deficiency(DSSD)is relatively common globally.Although the pathogenesis of DSSD remains unclear,evidence has suggested that the gut microbiota might play a significant role.Radix Astragali,used as both medicine and food,exerts the effects of tonifying spleen and qi.Astragalus polysaccharide(APS)comprises a macromolecule substance extracted from the dried root of Radix Astragali,which has many pharmacological functions.However,whether APS mitigates the immune disorders underlying the DSSD syndrome via regulating gut microbiota and the relevant mechanism remains unknown.Here,we used DSSD rats induced by high-fat and low-protein(HFLP)diet plus exhaustive swimming,and found that APS of moderate molecular weight increased the body weight gain and immune organ indexes,decreased the levels of interleukin-1β(IL-1β),IL-6,and endotoxin,and suppressed the Toll-like receptor 4/nuclear factor-κB(TLR4/NF-κB)pathway.Moreover,a total of 27 critical genera were significantly enriched according to the linear discriminant analysis effect size(LEfSe).APS increased the diversity of the gut microbiota and changed its composition,such as reducing the relative abundance of Pseudoflavonifractor and Paraprevotella,and increasing that of Parasutterella,Parabacteroides,Clostridium XIVb,Oscillibacter,Butyricicoccus,and Dorea.APS also elevated the contents of short-chain fatty acids(SCFAs).Furthermore,the correlation analysis indicated that 12 critical bacteria were related to the body weight gain and immune organ indexes.In general,our study demonstrated that APS ameliorated the immune disorders in DSSD rats via modulating their gut microbiota,especially for some bacteria involving immune and inflammatory response and SCFA production,as well as the TLR4/NF-κB pathway.This study provides an insight into the function of APS as a unique potential prebiotic through exerting systemic activities in treating DSSD.
基金the Key Research and Development Project of Science and Technology Department of Zhejiang Province,No.2019C03041.
文摘BACKGROUND Acute lung injury(ALI)and its final severe stage,acute respiratory distress syndrome,are associated with high morbidity and mortality rates in patients due to the lack of effective specific treatments.Gut microbiota homeostasis,including that in ALI,is important for human health.Evidence suggests that the gut microbiota improves lung injury through the lung-gut axis.Human umbilical cord mesenchymal cells(HUC-MSCs)have attractive prospects for ALI treatment.This study hypothesized that HUC-MSCs improve ALI via the lung-gut microflora.AIM To explore the effects of HUC-MSCs on lipopolysaccharide(LPS)-induced ALI in mice and the involvement of the lung-gut axis in this process.METHODS C57BL/6 mice were randomly divided into four groups(18 rats per group):Sham,sham+HUC-MSCs,LPS,and LPS+HUC-MSCs.ALI was induced in mice by intraperitoneal injections of LPS(10 mg/kg).After 6 h,mice were intervened with 0.5 mL phosphate buffered saline(PBS)containing 1×10^(6) HUC-MSCs by intraperitoneal injections.For the negative control,100 mL 0.9%NaCl and 0.5 mL PBS were used.Bronchoalveolar lavage fluid(BALF)was obtained from anesthetized mice,and their blood,lungs,ileum,and feces were obtained by an aseptic technique following CO_(2) euthanasia.Wright’s staining,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,Evans blue dye leakage assay,immunohistochemistry,fluorescence in situ hybridization,western blot,16S rDNA sequencing,and non-targeted metabolomics were used to observe the effect of HUC-MSCs on ALI mice,and the involvement of the lung-gut axis in this process was explored.One-way analysis of variance with post-hoc Tukey’s test,independent-sample Student’s t-test,Wilcoxon rank-sum test,and Pearson correlation analysis were used for statistical analyses.RESULTS HUC-MSCs were observed to improve pulmonary edema and lung and ileal injury,and decrease mononuclear cell and neutrophil counts,protein concentrations in BALF and inflammatory cytokine levels in the serum,lung,and ileum of ALI mice.Especially,HUC-MSCs decreased Evans blue concentration and Toll-like receptor 4,myeloid differentiation factor 88,p-nuclear factor kappa-B(NF-κB)/NF-κB,and p-inhibitorαof NF-κB(p-IκBα)/IκBαexpression levels in the lung,and raised the pulmonary vascular endothelial-cadherin,zonula occludens-1(ZO-1),and occludin levels and ileal ZO-1,claudin-1,and occludin expression levels.HUC-MSCs improved gut and BALF microbial homeostases.The number of pathogenic bacteria decreased in the BALF of ALI mice treated with HUCMSCs.Concurrently,the abundances of Oscillospira and Coprococcus in the feces of HUS-MSC-treated ALI mice were significantly increased.In addition,Lactobacillus,Bacteroides,and unidentified_Rikenellaceae genera appeared in both feces and BALF.Moreover,this study performed metabolomic analysis on the lung tissue and identified five upregulated metabolites and 11 downregulated metabolites in the LPS+MSC group compared to the LPS group,which were related to the purine metabolism and the taste transduction signaling pathways.Therefore,an intrinsic link between lung metabolite levels and BALF flora homeostasis was established.CONCLUSION This study suggests that HUM-MSCs attenuate ALI by redefining the gut and lung microbiota.
基金Natural Science Foundation of Hainan Province(No.820RC627)。
文摘Objective:To study the key target genes and signaling pathways in the treatment of Allergic Rhinitis(AR)with Radix Aconiti Lateralis Preparata(aka Fuzi).Methods:The TCMPS and PubChem databases were used to screen the active ingredients and target genes of Fuzi using oral bioavailability and drug similarity as screening conditions,and the GeneCards database was used to screen the target genes of AR.The online tool Venny2.1 was used to screen the target genes of Fuzi for the treatment of Allergic Rhinitis;the STRING database was used to obtain the protein-protein interaction(PPI)network of drug-disease targets,and the key target genes were identified by the MCC algorithm.The potential biological processes and signaling pathways were identified by GO enrichment and KEGG enrichment analysis.Finally,animal experiments were conducted to demonstrate the therapeutic effect ofFuzi on Allergic Rhinitis.Results:The TCMSP,PubChem and GeneCards databases were used to screen the 21 active compound components of Fuzi and 68 potential therapeutic target genes of Fuzi for Allergic Rhinitis.PPI network analysis identified the top ten key target genes,namely:PTGS2,TNF,IL6,AKT1,ALB,STAT3,CCL2,CXCL8,VEGFA and JUN,GO functional and KEGG pathway enrichment analysis showed that the significantly enriched functions and pathways of Fuzi on Allergic Rhinitis were closely related to Allergic Rhinitis.Finally,animal experiments were conducted to verify that Fuzi is effective in the treatment of Allergic rhinitis.Conclusion:Increased expression of IL-6 and TNF-αin nasal mucosal tissues of patients with Allergic Rhinitis was positively correlated with indicators related to the disease activity of AllergicRhinitis.Fuzi ameliorated the inflammatory changes in mice with Allergic Rhinitis by inhibiting the activation of Toll-like signaling pathway in the nasal mucosa and decreasing the expression activity of IL-6 and TNF-α.
基金supported by the National Natural Science Foundation of China (No. 81170005 and No. 30973220)
文摘HEp-2 cells persistently infected with respiratory syncytial virus(RSV) are a heterogeneous mixture of viral antigen-positive and-negative variants; however, the mechanism through which viral replication becomes latent remains unclear. In this study, we investigated the potential mechanism by which RSV escapes from innate immune surveillance. Persistent-infected RSV HEp-2 cells were isolated and cell clones were passaged. The RSV-persistent cells produced viruses at a lower titer, resisted wild-type RSV re-infection, and secreted high levels of interferon-β(IFN-β), macrophage inflammatory protein-1α(Mip-1α), interleukin-8(IL-8), and Rantes. Toll-like receptor 3(TLR3), retinoic acid inducible gene-I(RIG-I), and suppressor of cytokine signaling 1(SOCS1) levels were upregulated in these cells. The silencing of TLR3 m RNA decreased the expression of SOCS1 protein and the secretion of cytokines. RSV-persistent cells are in an inflammatory state; upregulation of SOCS1 is related to the TLR3 signaling pathway, which could be associated with the mechanism of viral persistence.
基金the National Natural Science Foundation of China(Nos.81701568,81930041,81571524,81872248,and 91842103)the Zhejiang Provincial Natural Science Foundation of China(Nos.Y15C080001 and Z19H100001)the Zhejiang Provincial Key Laboratory for Immunity and Inflammatory Diseases for its support。
文摘Although microRNA-155(miR-155)is considered a pro-inflammatory mediator,cumulative evidence indicates that it also has anti-inflammatory effects in macrophages and dendritic cells.In this study,we identified the dramatic expression changes of more than half of potential miR-155-targeted genes upon lipopolysaccharide(LPS)stimulation;223 genes were down-regulated and 85 genes were up-regulated,including suppressor of cytokine signaling 1(SOCS1)and transforming growth factor-β-activated kinase 1-binding protein 2(TAB2),two well-known genes involved in miR-155-mediated regulation of the Toll-like receptor 4(TLR4)signaling pathway.We also found that miR-155 acted as an anti-inflammatory mediator in the initial stage of LPS-induced inflammatory response mainly through repressing TAB2 protein translation,and as a proinflammatory mediator by down-regulating SOCS1 in the later stage.Meanwhile,overexpression of TAB23'untranslated region(UTR)in macrophages promoted the development of endotoxin tolerance by competing for binding with miR-155,which resulted in an elevated expression level of SOCS1 protein.These findings provide new insights for understanding the regulatory mechanisms in fine-tuning of LPS-induced innate immune response.