OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituen...OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.展开更多
Cerebral neuroinflammation models were established by injecting 10μg lipopolysaccharide into the hippocampus of male Sprague-Dawley rats. The rats were treated with an intraperitoneal injection of 120, 90, or 60 mg/k...Cerebral neuroinflammation models were established by injecting 10μg lipopolysaccharide into the hippocampus of male Sprague-Dawley rats. The rats were treated with an intraperitoneal injection of 120, 90, or 60 mg/kg oxymatrine daily for three days prior to the lipopolysaccharide injection. Twenty-four hours after model induction, the hippocampus was analyzed by real-time quantitative PCR, and the cerebral cortex was analyzed by enzyme-linked immunosorbent assay and western blot assay. The results of the enzyme-linked immunosorbent assay and the real-time quantitative PCR showed that the secretion and mRNA expression of the pro-inflammatory cytokines interleukin-113 and tumor necrosis factor-a were significantly decreased in the hippocampus and cerebral cortex of model rats treated with oxymatrine. Western blot assay and real-time quantitative PCR analysis indicated that toll-like receptor 4 mRNA and protein expression were significantly decreased in the groups receiving different doses of oxymatrine. Additionally, 120 and 90 mg/kg oxymatrine were shown to reduce protein levels of nuclear factor-KB p65 in the nucleus and of phosphorylated IKBa in the cytoplasm of brain cells, as detected by western blot assay. Experimental findings indicate that oxymatrine may inhibit neuroinflammation in rat brain via downregulating the expression of molecules in the toll-like receptor 4/nuclear factor-KB signaling Dathwav.展开更多
Sepsis is a life-threatening inflammatory syndrome with high morbidity and mortality rates.However,options for sepsis are still limited to general treatment in intensive care units(ICUs),and effective therapies that i...Sepsis is a life-threatening inflammatory syndrome with high morbidity and mortality rates.However,options for sepsis are still limited to general treatment in intensive care units(ICUs),and effective therapies that improve sepsis survival are required.Immune disturbances play a vital role in the pathology of sepsis and are associated with protracted inflammation,susceptibility to infections,and death.Therefore,many investigators have focused on the potential benefits of immunomodulation therapy for sepsis.Electroacupuncture(EA)has been practiced in clinics for many years and has shown advantages in treating infectious diseases.Over the last few decades,our understanding of the efficacy and mechanisms of EA in sepsis has undergone considerable developments.We searched the literature regarding“CNKI,Wan Fang Data,VIP Database,PubMed,and Ingenta Connect”from 2010 to 2023,using the keywords“sepsis”“septic”and“electroacupuncture”and 336 sources were searched.Finally,we included 82 studies that targeted the immune system to determine EA’s anti-inflammatory and immunomodulatory effects on sepsis.In this review,we found that EA has clinical benefits in relieving septic inflammation,improving immune function,and attenuating related multi-organ injury through several mechanisms,such as activation of the cholinergic anti-inflammatory pathway(CAP),vagaladrenal axis,inhibition of the nuclear factor Kappa-B(NF-κB)signaling pathway,signal transducers and activators of transcription(STAT)signaling pathway,and improvement of immune cell function.Therefore,EA may be a promising complementary therapy for sepsis treatment.We also expect these data will contribute to further studies on EA in sepsis.展开更多
BACKGROUND Acute lung injury(ALI)and its final severe stage,acute respiratory distress syndrome,are associated with high morbidity and mortality rates in patients due to the lack of effective specific treatments.Gut m...BACKGROUND Acute lung injury(ALI)and its final severe stage,acute respiratory distress syndrome,are associated with high morbidity and mortality rates in patients due to the lack of effective specific treatments.Gut microbiota homeostasis,including that in ALI,is important for human health.Evidence suggests that the gut microbiota improves lung injury through the lung-gut axis.Human umbilical cord mesenchymal cells(HUC-MSCs)have attractive prospects for ALI treatment.This study hypothesized that HUC-MSCs improve ALI via the lung-gut microflora.AIM To explore the effects of HUC-MSCs on lipopolysaccharide(LPS)-induced ALI in mice and the involvement of the lung-gut axis in this process.METHODS C57BL/6 mice were randomly divided into four groups(18 rats per group):Sham,sham+HUC-MSCs,LPS,and LPS+HUC-MSCs.ALI was induced in mice by intraperitoneal injections of LPS(10 mg/kg).After 6 h,mice were intervened with 0.5 mL phosphate buffered saline(PBS)containing 1×10^(6) HUC-MSCs by intraperitoneal injections.For the negative control,100 mL 0.9%NaCl and 0.5 mL PBS were used.Bronchoalveolar lavage fluid(BALF)was obtained from anesthetized mice,and their blood,lungs,ileum,and feces were obtained by an aseptic technique following CO_(2) euthanasia.Wright’s staining,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,Evans blue dye leakage assay,immunohistochemistry,fluorescence in situ hybridization,western blot,16S rDNA sequencing,and non-targeted metabolomics were used to observe the effect of HUC-MSCs on ALI mice,and the involvement of the lung-gut axis in this process was explored.One-way analysis of variance with post-hoc Tukey’s test,independent-sample Student’s t-test,Wilcoxon rank-sum test,and Pearson correlation analysis were used for statistical analyses.RESULTS HUC-MSCs were observed to improve pulmonary edema and lung and ileal injury,and decrease mononuclear cell and neutrophil counts,protein concentrations in BALF and inflammatory cytokine levels in the serum,lung,and ileum of ALI mice.Especially,HUC-MSCs decreased Evans blue concentration and Toll-like receptor 4,myeloid differentiation factor 88,p-nuclear factor kappa-B(NF-κB)/NF-κB,and p-inhibitorαof NF-κB(p-IκBα)/IκBαexpression levels in the lung,and raised the pulmonary vascular endothelial-cadherin,zonula occludens-1(ZO-1),and occludin levels and ileal ZO-1,claudin-1,and occludin expression levels.HUC-MSCs improved gut and BALF microbial homeostases.The number of pathogenic bacteria decreased in the BALF of ALI mice treated with HUCMSCs.Concurrently,the abundances of Oscillospira and Coprococcus in the feces of HUS-MSC-treated ALI mice were significantly increased.In addition,Lactobacillus,Bacteroides,and unidentified_Rikenellaceae genera appeared in both feces and BALF.Moreover,this study performed metabolomic analysis on the lung tissue and identified five upregulated metabolites and 11 downregulated metabolites in the LPS+MSC group compared to the LPS group,which were related to the purine metabolism and the taste transduction signaling pathways.Therefore,an intrinsic link between lung metabolite levels and BALF flora homeostasis was established.CONCLUSION This study suggests that HUM-MSCs attenuate ALI by redefining the gut and lung microbiota.展开更多
基金Natural Science Foundation Project of Chongqing Municipality:a Metabolome-based Study on the Protective Mechanism of Yemazhui(Herba Eupatorii Lindleyani)Sesquiterpene Lactones Against Acute Lung Injury(No.cstc2021jcyj-msxmX0365)Science and Technology Research Program of Chongqing Municipal Education Commission:a Cytokine Storm-based Study of the Protective Effect of Yemazhui(Herba Eupatorii Lindleyani)Extract Intervention on COVID-19 Lung Injury(No.KJZD-K202215101)。
文摘OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.
基金supported by a project of the Priority Academic Program Development of Jiangsu Higher Education InstitutionsApplied Research and Technology Plan of Nantong City, No. k2010036+2 种基金2011 Jiangsu Graduated Students' Research and Innovation Program, No. CX2211-0640Nantong University Graduated Students' Technological and Innovative Program, No. YKC11033Students' Practice Innovative Training Project of Nantong University
文摘Cerebral neuroinflammation models were established by injecting 10μg lipopolysaccharide into the hippocampus of male Sprague-Dawley rats. The rats were treated with an intraperitoneal injection of 120, 90, or 60 mg/kg oxymatrine daily for three days prior to the lipopolysaccharide injection. Twenty-four hours after model induction, the hippocampus was analyzed by real-time quantitative PCR, and the cerebral cortex was analyzed by enzyme-linked immunosorbent assay and western blot assay. The results of the enzyme-linked immunosorbent assay and the real-time quantitative PCR showed that the secretion and mRNA expression of the pro-inflammatory cytokines interleukin-113 and tumor necrosis factor-a were significantly decreased in the hippocampus and cerebral cortex of model rats treated with oxymatrine. Western blot assay and real-time quantitative PCR analysis indicated that toll-like receptor 4 mRNA and protein expression were significantly decreased in the groups receiving different doses of oxymatrine. Additionally, 120 and 90 mg/kg oxymatrine were shown to reduce protein levels of nuclear factor-KB p65 in the nucleus and of phosphorylated IKBa in the cytoplasm of brain cells, as detected by western blot assay. Experimental findings indicate that oxymatrine may inhibit neuroinflammation in rat brain via downregulating the expression of molecules in the toll-like receptor 4/nuclear factor-KB signaling Dathwav.
基金funded by the National Key Research and Development Program(2022YFC3500704)the National Natural Science Foundation of China(82174500,82004491).
文摘Sepsis is a life-threatening inflammatory syndrome with high morbidity and mortality rates.However,options for sepsis are still limited to general treatment in intensive care units(ICUs),and effective therapies that improve sepsis survival are required.Immune disturbances play a vital role in the pathology of sepsis and are associated with protracted inflammation,susceptibility to infections,and death.Therefore,many investigators have focused on the potential benefits of immunomodulation therapy for sepsis.Electroacupuncture(EA)has been practiced in clinics for many years and has shown advantages in treating infectious diseases.Over the last few decades,our understanding of the efficacy and mechanisms of EA in sepsis has undergone considerable developments.We searched the literature regarding“CNKI,Wan Fang Data,VIP Database,PubMed,and Ingenta Connect”from 2010 to 2023,using the keywords“sepsis”“septic”and“electroacupuncture”and 336 sources were searched.Finally,we included 82 studies that targeted the immune system to determine EA’s anti-inflammatory and immunomodulatory effects on sepsis.In this review,we found that EA has clinical benefits in relieving septic inflammation,improving immune function,and attenuating related multi-organ injury through several mechanisms,such as activation of the cholinergic anti-inflammatory pathway(CAP),vagaladrenal axis,inhibition of the nuclear factor Kappa-B(NF-κB)signaling pathway,signal transducers and activators of transcription(STAT)signaling pathway,and improvement of immune cell function.Therefore,EA may be a promising complementary therapy for sepsis treatment.We also expect these data will contribute to further studies on EA in sepsis.
基金the Key Research and Development Project of Science and Technology Department of Zhejiang Province,No.2019C03041.
文摘BACKGROUND Acute lung injury(ALI)and its final severe stage,acute respiratory distress syndrome,are associated with high morbidity and mortality rates in patients due to the lack of effective specific treatments.Gut microbiota homeostasis,including that in ALI,is important for human health.Evidence suggests that the gut microbiota improves lung injury through the lung-gut axis.Human umbilical cord mesenchymal cells(HUC-MSCs)have attractive prospects for ALI treatment.This study hypothesized that HUC-MSCs improve ALI via the lung-gut microflora.AIM To explore the effects of HUC-MSCs on lipopolysaccharide(LPS)-induced ALI in mice and the involvement of the lung-gut axis in this process.METHODS C57BL/6 mice were randomly divided into four groups(18 rats per group):Sham,sham+HUC-MSCs,LPS,and LPS+HUC-MSCs.ALI was induced in mice by intraperitoneal injections of LPS(10 mg/kg).After 6 h,mice were intervened with 0.5 mL phosphate buffered saline(PBS)containing 1×10^(6) HUC-MSCs by intraperitoneal injections.For the negative control,100 mL 0.9%NaCl and 0.5 mL PBS were used.Bronchoalveolar lavage fluid(BALF)was obtained from anesthetized mice,and their blood,lungs,ileum,and feces were obtained by an aseptic technique following CO_(2) euthanasia.Wright’s staining,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,Evans blue dye leakage assay,immunohistochemistry,fluorescence in situ hybridization,western blot,16S rDNA sequencing,and non-targeted metabolomics were used to observe the effect of HUC-MSCs on ALI mice,and the involvement of the lung-gut axis in this process was explored.One-way analysis of variance with post-hoc Tukey’s test,independent-sample Student’s t-test,Wilcoxon rank-sum test,and Pearson correlation analysis were used for statistical analyses.RESULTS HUC-MSCs were observed to improve pulmonary edema and lung and ileal injury,and decrease mononuclear cell and neutrophil counts,protein concentrations in BALF and inflammatory cytokine levels in the serum,lung,and ileum of ALI mice.Especially,HUC-MSCs decreased Evans blue concentration and Toll-like receptor 4,myeloid differentiation factor 88,p-nuclear factor kappa-B(NF-κB)/NF-κB,and p-inhibitorαof NF-κB(p-IκBα)/IκBαexpression levels in the lung,and raised the pulmonary vascular endothelial-cadherin,zonula occludens-1(ZO-1),and occludin levels and ileal ZO-1,claudin-1,and occludin expression levels.HUC-MSCs improved gut and BALF microbial homeostases.The number of pathogenic bacteria decreased in the BALF of ALI mice treated with HUCMSCs.Concurrently,the abundances of Oscillospira and Coprococcus in the feces of HUS-MSC-treated ALI mice were significantly increased.In addition,Lactobacillus,Bacteroides,and unidentified_Rikenellaceae genera appeared in both feces and BALF.Moreover,this study performed metabolomic analysis on the lung tissue and identified five upregulated metabolites and 11 downregulated metabolites in the LPS+MSC group compared to the LPS group,which were related to the purine metabolism and the taste transduction signaling pathways.Therefore,an intrinsic link between lung metabolite levels and BALF flora homeostasis was established.CONCLUSION This study suggests that HUM-MSCs attenuate ALI by redefining the gut and lung microbiota.