A study was conducted with 36 tomato germplasm [PGRC (19), The Netherlands (7), Japan (2), and Bangladesh (9)] with 3 check varieties in the research field of the Olericulture Division of Horticulture Research Centre ...A study was conducted with 36 tomato germplasm [PGRC (19), The Netherlands (7), Japan (2), and Bangladesh (9)] with 3 check varieties in the research field of the Olericulture Division of Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur during the winter season of 2022-23 to identify promising tomato breeding germplasm. All the germplasm showed differences in most of the parameters studied. Considerable variation was observed for fruit yield per hectare varied from 39 to 144 tons, while the highest fruit yield per hectare was harvested from the germplasm viz., BD 7759B, BD 7757, BD 7751, BD 7301, QM, BD 7759A, BD 7762, QF, BD 7753, BD 8886, BD 10351, NL-1A, SLA-19. The number of locules, total soluble solids (TSS) and plant height at last harvest varied from 2 to 6.6, 2.6 to 5.9%, and 66 to 154cm, respectively. The TYLCV infection (%) and leaf-sucking pest infestation (%) were observed with a 1 to 20% range in the field condition in both cases. So, we can select that germplasm has zero per cent infestation. Considering the plant growth habit, earliness, different yield contributing horticultural traits, virus and pest infestation thirteen germplasm viz., BD 7759B, BD 7757, BD 7751, BD 7301, QM, BD 7759A, BD 7762, QF, BD 7753, BD 8886, BD 10351, NL-1A, SLA-19 were selected as breeding materials for further tomato improvement program.展开更多
The study was conducted at Olericulture Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh during summer season of 2021 to see the performances of yield and yield-related components of twelve he...The study was conducted at Olericulture Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh during summer season of 2021 to see the performances of yield and yield-related components of twelve heat tolerant tomato hybrids. Significant variation was expressed for days to first harvest (101.0 - 108.0 days), while maximum number of fruits per plant was calculated in F<sub>1</sub> 2101 and F<sub>1</sub> 2201 (9.5), followed by F<sub>1</sub> 203, F1 2001, F<sub>1</sub> 2303, F<sub>1</sub> 2401 (9.0). The highest single fruit weight was estimated in F<sub>1</sub> 2501 (195.5 g), followed by F<sub>1</sub> 2101 (119.0 g), F<sub>1</sub> 2201 (113.8 g), while the range was 33.1 - 195.5 g. The range of fruit yield was 7.9 - 38.7 t/ha, while higher-yielding hybrids were viz., F<sub>1</sub> 203 (27.7 t/ha), F<sub>1</sub> 2101 (35.5 t/ha), F<sub>1</sub> 2201 (33.9 t/ha) and F<sub>1</sub> 2501 (28.7 t/ha). Maximum TSS was produced by F<sub>1 </sub>2501 (5.9%), followed by BARI Hybrid Tomato-8 (5.1%), F<sub>1</sub> 1101, F<sub>1</sub> 1903 (5.0%), with a range of 4.0% - 5.9%, while TYLCV infection and leaf sucking pest infestation varied from 0.0% - 10.0% and 3.3% - 16.7%, respectively. Thus, based on the performances of different yield and yield contributing traits, the hybrids, viz., F<sub>1</sub> 2101, F<sub>1 </sub>2201, F<sub>1 </sub>2501 may be selected to develop heat tolerant tomato hybrid varieties for the farmers of sub-tropical regions.展开更多
Tomato (Lycopersicon esculentum) is one of the important vegetables in supplying vitamins, minerals and fiber to human diets worldwide. Its successful production in the tropics is, however, constrained by environmenta...Tomato (Lycopersicon esculentum) is one of the important vegetables in supplying vitamins, minerals and fiber to human diets worldwide. Its successful production in the tropics is, however, constrained by environmental variations especially under open field conditions. Two trials were conducted at the Horticulture Research and Teaching Field, Egerton University, Kenya to evaluate the effects of agricultural nets (agronets) herein called eco-friendly nets (EFNs) and floating row covers (FRCs) on microclimate modification, yield, and quality of tomato. A randomized complete block design with five replications was used. Tomato plants were grown under fine mesh EFN (0.4-mm pore diameter) cover, large mesh EFN (0.9-mm pore diameter) cover or FRC. The EFN and FRC were maintained either permanently closed or opened thrice a week from 9 am to 3 pm. Two open control treatments were used: unsprayed (untreated control) or sprayed with chemicals (treated control). The use of EFN or FRC modified the microclimate with higher temperatures, lower diurnal temperature ranges, and higher volumetric water content recorded compared with the controls. On the other hand, light quantity and photosynthetic active radiation were reduced by the use of EFN and FRC compared with the controls. The use of FRC and EFN resulted in more fruit and higher percent in marketable yield compared with open field production. Fruit quality at harvest was also significantly improved by the use of EFN and FRC. Fruits with higher total soluble solids (TSS), lower titratable acidity (TA), and higher sugar acid ratio were obtained in EFN and FRC treatments compared with the controls. Fruits harvested from EFN and FRC were also firmer compared with control fruits. These findings demonstrate the potential of EFN and FRC in modifying microclimate conditions and improving yields and quality of tomato under tropical field conditions.展开更多
The potential of different water hyacinth compost application rates in influencing growth attributes, yield and heavy metal accumulation of lead (Pb), copper (Cu), nickel (Ni) and zinc (Zn) in tomato fruit was studied...The potential of different water hyacinth compost application rates in influencing growth attributes, yield and heavy metal accumulation of lead (Pb), copper (Cu), nickel (Ni) and zinc (Zn) in tomato fruit was studied in Masvingo. Four treatments of water hyacinth compost rates of 0, 37, 55.6 and 74.1 t·ha-1 were each replicated three times and applied in a randomized complete block design set up. Results showed that water hyacinth compost application rates significantly affected plant height, days to maturity and yield but had no influence on the number of tomato fruits per plant. The plant height at application rate of 74.1 t·ha-1 was 25%, 56% and 63% higher than the control at week 6, 9 and 12, respectively. At application rates of 56.6 t·ha-1, plant heights were 11%, 13% and 12% higher than the control whilst marginal plant height differences of -4%, 6% and 4% were recorded between application rate of 34.7 t·ha-1 and the control at week 6, 9 and 12, respectively. Tomato plants under compost rates of 34.7, 56.6 and 74.1 t·ha-1 in comparison to the control delayed maturity by 10, 17 and 20 days, respectively. Yields of 52, 55, 60 and 68 t·ha-1 were realized from hyacinth compost rates of 0, 34.7, 56.6 and 74.1 t·ha-1, respectively. Heavy metal concentrations increased with increase in the water hyacinth compost rate but at all application rates, the average concentrations were 85%, 93% and 86% lower than the Codex Alimentarious Commission permissible levels for Pb, Cu and Zn. Water hyacinth compost at a rate of 74 t·ha-1 therefore can be used for increased tomato yield without exposing consumers to heavy metal toxicity.展开更多
To accelerate the breeding process, male sterile line is used to leave out the troublesome procedures of the artificial emasculation in tomato breeding. However, the fertility of the pollen thermo-sensitivity male ste...To accelerate the breeding process, male sterile line is used to leave out the troublesome procedures of the artificial emasculation in tomato breeding. However, the fertility of the pollen thermo-sensitivity male sterile line (PTMSL) and the stigma exsertion male sterile line (SEMSL) are affected easily by the environments when used alone. The trial materials were Da107 and the control was First. This study was conducted to create a new male sterile line of tomato characterized by pollen thermo-sensitivity and long style by genic recombination through the hybridizing of the PTMSL and SEMSL. Research on the statistics of the pollen germination rate, the contamination rate in F1 and the flower organics indicated that Da107 was an ideal TS and SE male sterile line with the sterility of 95%, as well as it also could be used as fertile line at low temperature. Meanwhile, the results showed that hybrid-seed contamination risk with selfed seeds from residual fertility in Da107 was low.展开更多
Brassinosteroids (BRs) and polyamines (PAs) are widely used to overcome abiotic stresses including salinity stress (NaCl) in plants. In the present investigation, we evaluated the co-application efficacy of 24-epibras...Brassinosteroids (BRs) and polyamines (PAs) are widely used to overcome abiotic stresses including salinity stress (NaCl) in plants. In the present investigation, we evaluated the co-application efficacy of 24-epibrassinolide (EBR, a highly active BR) and putrescine (Put, a PA) on the NaCl stress (75 mM and 150 mM) tolerance of Lycopersicon esculentum L. cv. kuber geeta plants. A small rise in protein content was recorded under salinity stress in comparison with untreated control. The NaCl stress was found to significantly enhance the activities of guaiacol peroxidase (GPOX) and superoxide dismutase (SOD);while decline in catalase (CAT) activity was recorded when compared with the untreated control. Salinity stress both at 75 mM and 150 mM was able to cause significant membrane damage as evidenced by an increase in the level of malondialdehyde (MDA) content over untreated control. The EBR and Put co-applications were able to improve protein content in NaCl stressed plants over only NaCl stressed plants. The co-applications of EBR and Put were able to significantly enhance the activities of CAT, SOD and GPOX in L. esculentum under salinity stress (75 mM and 150 mM) when compared with NaCl stressed plants alone. Major decline in the MDA level recorded for EBR and Put co-applications under NaCl stress revealed reduced membrane damages when compared with NaCl stressed plants alone. Our findings provide evidence that EBR and Put co-applications are effective in amelioration of NaCl stress in L. esculentum. Thus co-application potential of EBR and Put may acts an eco-friendly approach towards NaCl stress mitigation in economically important crops.展开更多
The effects of Nd^3+ on the quality and quantity of volatile organic compounds (VOCs) in the leaves of Lycopersicon esculentum were studied. The results demonstrate that Nd^3+ can increase the total amount of VOC ...The effects of Nd^3+ on the quality and quantity of volatile organic compounds (VOCs) in the leaves of Lycopersicon esculentum were studied. The results demonstrate that Nd^3+ can increase the total amount of VOC by 75% after treatment for 120 h, as compared with the control. Phyto-oxylipins, terpenoids and aromatic compounds were increased by 73%, 38% and 21%, respectively. (E)-2-hexenal, the most abundant constituent is increased by 74%, β- phellandrene and α-caryophyllene in terpenoids,展开更多
Among plants, the Lycopersicon esculentum (Solanaceae) is the most important for its beneficial effects on health. Several epidemiological studies have shown the benefits of tomato consumption in the cancer and cardio...Among plants, the Lycopersicon esculentum (Solanaceae) is the most important for its beneficial effects on health. Several epidemiological studies have shown the benefits of tomato consumption in the cancer and cardiovascular disease prevention. Tomato products constitute the major source of lycopene, the most potent antioxidant among carotenoids in vitro. In tomatoes leaves are also present many secondary metabolites including phenolic compounds, phytoalexins, protease inhibitors and glycoalkaloids who protect against adverse effects of hosts including fungi, bacteria, viruses, and insects and are involved in host-plant resistance. In this work we evaluated the antiproliferative activity of tomato leaves extract (var. Paul Robenson) in vitro.展开更多
[Objective] This study aimed to investigate the inheritance mechanism of tomato fruit firmness.[Method] Two tomato cultivars significantly different in fruit firmness were selected for investigation of the inheritance...[Objective] This study aimed to investigate the inheritance mechanism of tomato fruit firmness.[Method] Two tomato cultivars significantly different in fruit firmness were selected for investigation of the inheritance mechanism of tomato fruit firmness using combination analysis of six generations (P1,P2,F1,F2,B1 and B2).[Result] The results indicated that the heredity of tomato fruit firmness was consistent with the additive-dominant model controlled by one pair of major genes; the additive effect (d),dominant effect (h) and degree of dominance (h/d) of major genes were 17.37,-7.96 and-0.46,respectively,showing positive additive effect and incompletely dominant-negative effect; the hereditability of major gene effect in B1,B2 and F2 generation was 88.59%,45.81% and 85.62%,respectively.[Conclusion] The heredity of fruit firmness was controlled by one pair of major gene,showing significant additive effect and dominant effect.展开更多
A cDNA Library was constructed with the heat shocked tomato ( Lycopersicon esculentum Mill.) flowers and then was screened with the probes of mitochondrial and endoplasmic reticulum conservative regions that were clon...A cDNA Library was constructed with the heat shocked tomato ( Lycopersicon esculentum Mill.) flowers and then was screened with the probes of mitochondrial and endoplasmic reticulum conservative regions that were cloned by using RT-PCR. The complete cDNAs of mitochondrial and endoplasmic reticulum small heat shock protein ( shsp) were selected out from the cDNA library. Furthermore, the temperature responses of these shsp genes were determined. Northern hybridization showed that the heat response temperatures of both genes in tomato flower were lower than that in leaf and that mitochondria shsp in leaf was cold-inducible. In this paper, the molecular features of the cloned genes, the causes of the uncommon heat response temperatures of sHSP in newer and the cold inducible character of mitochondria shsp gene in leaf were discussed.展开更多
[Objective] The aim was to explore the effects of low night temperature treatment on sucrose synthesis ability of tomato leaves in seedling stage.[Method] Effects of low night temperature of 6 ℃(with 15 ℃ as contro...[Objective] The aim was to explore the effects of low night temperature treatment on sucrose synthesis ability of tomato leaves in seedling stage.[Method] Effects of low night temperature of 6 ℃(with 15 ℃ as control)on the sucrose synthesis ability of tomato leaves were studied after 1,3,5,7 d of treatment.[Result] The contents of fructose,glucose and sucrose in tomato leaves were higher than control at 6:00 during the treatment of low night temperature,but in contrast at 11:00.The contents of fructose,glucose and sucrose in tomato leaves of low night temperature treatment and control group at 6:00 were lower than that at 11:00.The content of starch in tomato leaves was higher than control at 6:00 and 11:00 during the treatment.And the activities of sugar metabolism enzymes of tomato were changed by the treatment of low night temperature.The activities of acid invertase(AI)and neutral invertase(NI)were higher than those of control,while the activities of sucrose synthase(SS)and sucrose phosphate synthase(SPS)were lower than control at 6:00 and 11:00 during the treatment.The activity of all the enzymes at 11:00 of low night temperature treatment plants treated for 1,3,5,7 d was higher than that at 6:00.Compared to 6:00,the invertase activity of the control plant decreased,while the synthetase activity increased.The activity of sucrose synthase(SS)was decreased for treated plants,and the increase amount of sucrose content in leaves was lower than that of control at 11:00 during the treatment,indicating that the sucrose synthesis ability of tomato leaves was decreased by the treatment of low night temperature.[Conclusion] The results in this study had provided theoretical basis for the environmental control of high-yield cultivation of tomato.展开更多
Four irrigation treatments were designed with 2,4,6 and 8 d intervals to irrigate, respectively. Watering was stopped when the reading of the moisture tension sensor reached zero. The results indicated that glucose an...Four irrigation treatments were designed with 2,4,6 and 8 d intervals to irrigate, respectively. Watering was stopped when the reading of the moisture tension sensor reached zero. The results indicated that glucose and fructose content of tomato's fruit were increased but sucrose content was decreased with fruit growth and development. In different stages, carbohydrate content of tomato fruit in the treatment 3 was the highest, in the treatment 2 was higher, and in the other treatments was the lowest. SS(sucrose synthase)activity was decreased but SPS(sucrose phosphate synthase)activity was increased with development of tomato. SS and SPS activity were increased but acid invertase and neutral invertase activity of ripe stage were decreased under deficit irrigation. Glucose and fructose content were increased in leaves of tomato under water deficit. Soluble sugars, organic acid and the ratio of sugar/acid in tomato fruits were increased and dry matter accumulation of plant was enhanced under water deficit. But the growth of fruits upside the plant and its dry matter accumulation were badly affected under water stress.展开更多
文摘A study was conducted with 36 tomato germplasm [PGRC (19), The Netherlands (7), Japan (2), and Bangladesh (9)] with 3 check varieties in the research field of the Olericulture Division of Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur during the winter season of 2022-23 to identify promising tomato breeding germplasm. All the germplasm showed differences in most of the parameters studied. Considerable variation was observed for fruit yield per hectare varied from 39 to 144 tons, while the highest fruit yield per hectare was harvested from the germplasm viz., BD 7759B, BD 7757, BD 7751, BD 7301, QM, BD 7759A, BD 7762, QF, BD 7753, BD 8886, BD 10351, NL-1A, SLA-19. The number of locules, total soluble solids (TSS) and plant height at last harvest varied from 2 to 6.6, 2.6 to 5.9%, and 66 to 154cm, respectively. The TYLCV infection (%) and leaf-sucking pest infestation (%) were observed with a 1 to 20% range in the field condition in both cases. So, we can select that germplasm has zero per cent infestation. Considering the plant growth habit, earliness, different yield contributing horticultural traits, virus and pest infestation thirteen germplasm viz., BD 7759B, BD 7757, BD 7751, BD 7301, QM, BD 7759A, BD 7762, QF, BD 7753, BD 8886, BD 10351, NL-1A, SLA-19 were selected as breeding materials for further tomato improvement program.
文摘The study was conducted at Olericulture Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh during summer season of 2021 to see the performances of yield and yield-related components of twelve heat tolerant tomato hybrids. Significant variation was expressed for days to first harvest (101.0 - 108.0 days), while maximum number of fruits per plant was calculated in F<sub>1</sub> 2101 and F<sub>1</sub> 2201 (9.5), followed by F<sub>1</sub> 203, F1 2001, F<sub>1</sub> 2303, F<sub>1</sub> 2401 (9.0). The highest single fruit weight was estimated in F<sub>1</sub> 2501 (195.5 g), followed by F<sub>1</sub> 2101 (119.0 g), F<sub>1</sub> 2201 (113.8 g), while the range was 33.1 - 195.5 g. The range of fruit yield was 7.9 - 38.7 t/ha, while higher-yielding hybrids were viz., F<sub>1</sub> 203 (27.7 t/ha), F<sub>1</sub> 2101 (35.5 t/ha), F<sub>1</sub> 2201 (33.9 t/ha) and F<sub>1</sub> 2501 (28.7 t/ha). Maximum TSS was produced by F<sub>1 </sub>2501 (5.9%), followed by BARI Hybrid Tomato-8 (5.1%), F<sub>1</sub> 1101, F<sub>1</sub> 1903 (5.0%), with a range of 4.0% - 5.9%, while TYLCV infection and leaf sucking pest infestation varied from 0.0% - 10.0% and 3.3% - 16.7%, respectively. Thus, based on the performances of different yield and yield contributing traits, the hybrids, viz., F<sub>1</sub> 2101, F<sub>1 </sub>2201, F<sub>1 </sub>2501 may be selected to develop heat tolerant tomato hybrid varieties for the farmers of sub-tropical regions.
文摘Tomato (Lycopersicon esculentum) is one of the important vegetables in supplying vitamins, minerals and fiber to human diets worldwide. Its successful production in the tropics is, however, constrained by environmental variations especially under open field conditions. Two trials were conducted at the Horticulture Research and Teaching Field, Egerton University, Kenya to evaluate the effects of agricultural nets (agronets) herein called eco-friendly nets (EFNs) and floating row covers (FRCs) on microclimate modification, yield, and quality of tomato. A randomized complete block design with five replications was used. Tomato plants were grown under fine mesh EFN (0.4-mm pore diameter) cover, large mesh EFN (0.9-mm pore diameter) cover or FRC. The EFN and FRC were maintained either permanently closed or opened thrice a week from 9 am to 3 pm. Two open control treatments were used: unsprayed (untreated control) or sprayed with chemicals (treated control). The use of EFN or FRC modified the microclimate with higher temperatures, lower diurnal temperature ranges, and higher volumetric water content recorded compared with the controls. On the other hand, light quantity and photosynthetic active radiation were reduced by the use of EFN and FRC compared with the controls. The use of FRC and EFN resulted in more fruit and higher percent in marketable yield compared with open field production. Fruit quality at harvest was also significantly improved by the use of EFN and FRC. Fruits with higher total soluble solids (TSS), lower titratable acidity (TA), and higher sugar acid ratio were obtained in EFN and FRC treatments compared with the controls. Fruits harvested from EFN and FRC were also firmer compared with control fruits. These findings demonstrate the potential of EFN and FRC in modifying microclimate conditions and improving yields and quality of tomato under tropical field conditions.
文摘The potential of different water hyacinth compost application rates in influencing growth attributes, yield and heavy metal accumulation of lead (Pb), copper (Cu), nickel (Ni) and zinc (Zn) in tomato fruit was studied in Masvingo. Four treatments of water hyacinth compost rates of 0, 37, 55.6 and 74.1 t·ha-1 were each replicated three times and applied in a randomized complete block design set up. Results showed that water hyacinth compost application rates significantly affected plant height, days to maturity and yield but had no influence on the number of tomato fruits per plant. The plant height at application rate of 74.1 t·ha-1 was 25%, 56% and 63% higher than the control at week 6, 9 and 12, respectively. At application rates of 56.6 t·ha-1, plant heights were 11%, 13% and 12% higher than the control whilst marginal plant height differences of -4%, 6% and 4% were recorded between application rate of 34.7 t·ha-1 and the control at week 6, 9 and 12, respectively. Tomato plants under compost rates of 34.7, 56.6 and 74.1 t·ha-1 in comparison to the control delayed maturity by 10, 17 and 20 days, respectively. Yields of 52, 55, 60 and 68 t·ha-1 were realized from hyacinth compost rates of 0, 34.7, 56.6 and 74.1 t·ha-1, respectively. Heavy metal concentrations increased with increase in the water hyacinth compost rate but at all application rates, the average concentrations were 85%, 93% and 86% lower than the Codex Alimentarious Commission permissible levels for Pb, Cu and Zn. Water hyacinth compost at a rate of 74 t·ha-1 therefore can be used for increased tomato yield without exposing consumers to heavy metal toxicity.
文摘To accelerate the breeding process, male sterile line is used to leave out the troublesome procedures of the artificial emasculation in tomato breeding. However, the fertility of the pollen thermo-sensitivity male sterile line (PTMSL) and the stigma exsertion male sterile line (SEMSL) are affected easily by the environments when used alone. The trial materials were Da107 and the control was First. This study was conducted to create a new male sterile line of tomato characterized by pollen thermo-sensitivity and long style by genic recombination through the hybridizing of the PTMSL and SEMSL. Research on the statistics of the pollen germination rate, the contamination rate in F1 and the flower organics indicated that Da107 was an ideal TS and SE male sterile line with the sterility of 95%, as well as it also could be used as fertile line at low temperature. Meanwhile, the results showed that hybrid-seed contamination risk with selfed seeds from residual fertility in Da107 was low.
文摘Brassinosteroids (BRs) and polyamines (PAs) are widely used to overcome abiotic stresses including salinity stress (NaCl) in plants. In the present investigation, we evaluated the co-application efficacy of 24-epibrassinolide (EBR, a highly active BR) and putrescine (Put, a PA) on the NaCl stress (75 mM and 150 mM) tolerance of Lycopersicon esculentum L. cv. kuber geeta plants. A small rise in protein content was recorded under salinity stress in comparison with untreated control. The NaCl stress was found to significantly enhance the activities of guaiacol peroxidase (GPOX) and superoxide dismutase (SOD);while decline in catalase (CAT) activity was recorded when compared with the untreated control. Salinity stress both at 75 mM and 150 mM was able to cause significant membrane damage as evidenced by an increase in the level of malondialdehyde (MDA) content over untreated control. The EBR and Put co-applications were able to improve protein content in NaCl stressed plants over only NaCl stressed plants. The co-applications of EBR and Put were able to significantly enhance the activities of CAT, SOD and GPOX in L. esculentum under salinity stress (75 mM and 150 mM) when compared with NaCl stressed plants alone. Major decline in the MDA level recorded for EBR and Put co-applications under NaCl stress revealed reduced membrane damages when compared with NaCl stressed plants alone. Our findings provide evidence that EBR and Put co-applications are effective in amelioration of NaCl stress in L. esculentum. Thus co-application potential of EBR and Put may acts an eco-friendly approach towards NaCl stress mitigation in economically important crops.
文摘The effects of Nd^3+ on the quality and quantity of volatile organic compounds (VOCs) in the leaves of Lycopersicon esculentum were studied. The results demonstrate that Nd^3+ can increase the total amount of VOC by 75% after treatment for 120 h, as compared with the control. Phyto-oxylipins, terpenoids and aromatic compounds were increased by 73%, 38% and 21%, respectively. (E)-2-hexenal, the most abundant constituent is increased by 74%, β- phellandrene and α-caryophyllene in terpenoids,
文摘Among plants, the Lycopersicon esculentum (Solanaceae) is the most important for its beneficial effects on health. Several epidemiological studies have shown the benefits of tomato consumption in the cancer and cardiovascular disease prevention. Tomato products constitute the major source of lycopene, the most potent antioxidant among carotenoids in vitro. In tomatoes leaves are also present many secondary metabolites including phenolic compounds, phytoalexins, protease inhibitors and glycoalkaloids who protect against adverse effects of hosts including fungi, bacteria, viruses, and insects and are involved in host-plant resistance. In this work we evaluated the antiproliferative activity of tomato leaves extract (var. Paul Robenson) in vitro.
文摘[Objective] This study aimed to investigate the inheritance mechanism of tomato fruit firmness.[Method] Two tomato cultivars significantly different in fruit firmness were selected for investigation of the inheritance mechanism of tomato fruit firmness using combination analysis of six generations (P1,P2,F1,F2,B1 and B2).[Result] The results indicated that the heredity of tomato fruit firmness was consistent with the additive-dominant model controlled by one pair of major genes; the additive effect (d),dominant effect (h) and degree of dominance (h/d) of major genes were 17.37,-7.96 and-0.46,respectively,showing positive additive effect and incompletely dominant-negative effect; the hereditability of major gene effect in B1,B2 and F2 generation was 88.59%,45.81% and 85.62%,respectively.[Conclusion] The heredity of fruit firmness was controlled by one pair of major gene,showing significant additive effect and dominant effect.
文摘A cDNA Library was constructed with the heat shocked tomato ( Lycopersicon esculentum Mill.) flowers and then was screened with the probes of mitochondrial and endoplasmic reticulum conservative regions that were cloned by using RT-PCR. The complete cDNAs of mitochondrial and endoplasmic reticulum small heat shock protein ( shsp) were selected out from the cDNA library. Furthermore, the temperature responses of these shsp genes were determined. Northern hybridization showed that the heat response temperatures of both genes in tomato flower were lower than that in leaf and that mitochondria shsp in leaf was cold-inducible. In this paper, the molecular features of the cloned genes, the causes of the uncommon heat response temperatures of sHSP in newer and the cold inducible character of mitochondria shsp gene in leaf were discussed.
基金Supported by National Natural Science Foundation of China(30170640)~~
文摘[Objective] The aim was to explore the effects of low night temperature treatment on sucrose synthesis ability of tomato leaves in seedling stage.[Method] Effects of low night temperature of 6 ℃(with 15 ℃ as control)on the sucrose synthesis ability of tomato leaves were studied after 1,3,5,7 d of treatment.[Result] The contents of fructose,glucose and sucrose in tomato leaves were higher than control at 6:00 during the treatment of low night temperature,but in contrast at 11:00.The contents of fructose,glucose and sucrose in tomato leaves of low night temperature treatment and control group at 6:00 were lower than that at 11:00.The content of starch in tomato leaves was higher than control at 6:00 and 11:00 during the treatment.And the activities of sugar metabolism enzymes of tomato were changed by the treatment of low night temperature.The activities of acid invertase(AI)and neutral invertase(NI)were higher than those of control,while the activities of sucrose synthase(SS)and sucrose phosphate synthase(SPS)were lower than control at 6:00 and 11:00 during the treatment.The activity of all the enzymes at 11:00 of low night temperature treatment plants treated for 1,3,5,7 d was higher than that at 6:00.Compared to 6:00,the invertase activity of the control plant decreased,while the synthetase activity increased.The activity of sucrose synthase(SS)was decreased for treated plants,and the increase amount of sucrose content in leaves was lower than that of control at 11:00 during the treatment,indicating that the sucrose synthesis ability of tomato leaves was decreased by the treatment of low night temperature.[Conclusion] The results in this study had provided theoretical basis for the environmental control of high-yield cultivation of tomato.
基金supported by the National Natural Science Fundation of China(30170640)Natural Science Fund of Liaoning Provice,China(20022080).
文摘Four irrigation treatments were designed with 2,4,6 and 8 d intervals to irrigate, respectively. Watering was stopped when the reading of the moisture tension sensor reached zero. The results indicated that glucose and fructose content of tomato's fruit were increased but sucrose content was decreased with fruit growth and development. In different stages, carbohydrate content of tomato fruit in the treatment 3 was the highest, in the treatment 2 was higher, and in the other treatments was the lowest. SS(sucrose synthase)activity was decreased but SPS(sucrose phosphate synthase)activity was increased with development of tomato. SS and SPS activity were increased but acid invertase and neutral invertase activity of ripe stage were decreased under deficit irrigation. Glucose and fructose content were increased in leaves of tomato under water deficit. Soluble sugars, organic acid and the ratio of sugar/acid in tomato fruits were increased and dry matter accumulation of plant was enhanced under water deficit. But the growth of fruits upside the plant and its dry matter accumulation were badly affected under water stress.