In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infi...In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess,alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province,and the following results were obtained:(1)The source of Hg in subsurface flow zone is mainly caused by mineral processing activities;(2)the subsurface flow zone in the study area is in alkaline environment,and the residual state,iron and manganese oxidation state,strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment;mercury in river alluvial or diluvial strata is mainly concentrated in silt,tailings and clayey silt soil layer,and mercury has certain stability,and the form of mercury in loess is easier to transform than the other two media;(3)under the flooding condition,most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed,and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection;(4)infiltration at the flood level accelerates the migration of pollutants to the ground;(5)the soil in the undercurrent zone is overloaded and has seriously exceeded the standard.Although the groundwater monitoring results are safe this time,relevant enterprises or departments should continue to pay attention to improving the gold extraction process,especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes,and intensify efforts to solve the geological environmental problems of mines left over from history.At present,the occurrence form of mercury in the undercurrent zone is relatively stable,but the water and soil layers have been polluted.The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links.The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.展开更多
基金This study was funded by the survey projects initiated by the Ministry of Natural Resources of the People’s Republic of China(1212010741003,1212011220224,and 121201011000150022)China Geological Survey(DD20189220,DD20211317)+2 种基金the public welfare scientific research project launched by the Ministry of Natural Resources of the People’s Republic of China(201111020)the project of 2015 Natural Science Basic Research Plan of Shaanxi Province of China(2015JM4129)the project of 2016 Fundamental Research Funds for the Central Universities of China(an open-end fund)(310829161128).
文摘In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment,the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess,alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province,and the following results were obtained:(1)The source of Hg in subsurface flow zone is mainly caused by mineral processing activities;(2)the subsurface flow zone in the study area is in alkaline environment,and the residual state,iron and manganese oxidation state,strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment;mercury in river alluvial or diluvial strata is mainly concentrated in silt,tailings and clayey silt soil layer,and mercury has certain stability,and the form of mercury in loess is easier to transform than the other two media;(3)under the flooding condition,most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed,and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection;(4)infiltration at the flood level accelerates the migration of pollutants to the ground;(5)the soil in the undercurrent zone is overloaded and has seriously exceeded the standard.Although the groundwater monitoring results are safe this time,relevant enterprises or departments should continue to pay attention to improving the gold extraction process,especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes,and intensify efforts to solve the geological environmental problems of mines left over from history.At present,the occurrence form of mercury in the undercurrent zone is relatively stable,but the water and soil layers have been polluted.The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links.The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.