The 2022 Honghe M_(S)5.0 seismic event is intriguing due to its occurrence in the south of the Red River Fault,an area historically lacking seismic activities greater than M_(S)5.0.To elucidate the seismogenic mechani...The 2022 Honghe M_(S)5.0 seismic event is intriguing due to its occurrence in the south of the Red River Fault,an area historically lacking seismic activities greater than M_(S)5.0.To elucidate the seismogenic mechanism and scrutinize stress-triggered interactions,we calculated co-seismic and post-seismic Coulomb stress alterations induced by nine historical seismic events(M≥6.0).The analysis reveals that these substantial seismic events provoked co-seismic stress augmentations of 1.409 bar and postseismic stress increments of 0.159 bar.Noteworthy seismic events,such as the 1833 Songming,1877Shiping,1913 Eshan,and 1970 Tonghai earthquakes,catalyzed the occurrence of the Honghe earthquake.Areas of heightened future seismic risk include the southern region of the Red River Fault and the eastern segments of the Shiping-Jianshui and Qujiang faults.Additionally,we assessed the correlation between the spatial distribution of aftershocks and the Coulomb stress shift triggered by the mainshock,taking into account the influence of calculation parameter settings.展开更多
In January 2010, the Suining Ms5.0 earthquake occurred in central Sichuan Basin, with the epicenter in Moxi-Longnvsi structural belt and a focal depth of 10 km. Based on structural interpretations of seismic profiles ...In January 2010, the Suining Ms5.0 earthquake occurred in central Sichuan Basin, with the epicenter in Moxi-Longnvsi structural belt and a focal depth of 10 km. Based on structural interpretations of seismic profiles in this area, we recognized a regional detachment fault located at a depth of 9-10 km in the Presinian basement of the Suining area, transferring its slipping from NW to SE orientation. This detachment fault slipped from NW to SE, and underwent several shears and bends, which caused the basement to be rolled in and the overlaying strata fold deformation. It formed a fault-bend fold in the Moxi area with an approximate slip of 4 km. Correspondingly, the formation of the Moxi anticline is related to the detachment fault. With the earthquake's epicenter on the ramp of the detachment fault, there is a new point of view that the Suining earthquake was caused by re-activation of this basement detachment fault. Since the Late Jurassic period, under the influence of regional tectonic stress, the detachment fault transfered its slip from the Longmen Mountains (LMS) thrust belt to the hinterland of the Sichuan Basin, and finally to the piedmont zone of southwest Huayingshan (HYS), which indicates that HYS might be the final front area of the LMS thrust belt.展开更多
The 1970 Tonghai earthquake, which occurred on January 5, 1970, in Tonghai County, Yunnan Province, China, triggered a large number of landslides. Since the occurrence of the earthquake, there have been a huge number ...The 1970 Tonghai earthquake, which occurred on January 5, 1970, in Tonghai County, Yunnan Province, China, triggered a large number of landslides. Since the occurrence of the earthquake, there have been a huge number of research reports on the seismogenic structure and earthquake mechanism, but rare reports on the seismic landslides. As the largest earthquake recorded in the Qujiang fault zone, the study on the coseismic landslides triggered by this earthquake are of great significance to the prevention and mitigation of earthquake-induced landslides in this region. In this study, we established a coseismic landslide inventory for the VⅢ–X seismic intensity areas of the Ms 7.7 Tonghai earthquake, and conducted spatial analysis on the coseismic landslides, mainly having analyzed the effect of the topographic factors, geological factors, and seismic factors on the development of the coseismic landslides. To enhance the understanding of this earthquake, we converted the earthquake epicenter and magnitude with empirical formulas based on the distributions and areas of the coseismic landslides. Comparing with coseismic landslides in other earthquake-hit areas, we found the capability that this earthquake could induce landslides is low. This study provides a useful supplement to the global coseismic landslide inventories and could be the basic data for seismic landslide assessment in this earthquake-prone region.展开更多
On the basis of the airgun source signals recorded by the stations from January,2016 to June,2017,we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of e...On the basis of the airgun source signals recorded by the stations from January,2016 to June,2017,we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of each station.We used the Yunlong MS5.0 and Yangbi MS5.1 earthquakes as samples.According to regional characteristics,13 stations with high signal-to-noise ratios and complete data were selected(including 3 fixed stations and 10 active source stations).They are divided into four regions,and on the basis of the GNSS baseline data,the characteristics of regional wave velocity changes before and after the earthquake are analyzed.The results show that the station phase travel time change and the regional stress characteristics represented by the GNSS baseline data have good correlation in the short-term.Due to different degrees of regional stress,there are differences in the travel time changes of different stations in the four regions.Before the Yunlong MS5.0 and Yangbi MS5.1 earthquakes,with regional stress adjustment,there is an upward trend in the travel time changes of related stations in the adjacent areas of up to 0.02 s.The difference is that there are differences in the time nodes and duration of the travel time anomalies,and there is a reverse descent process after the Yangbi MS5.1 earthquake.There are different degrees of travel time fluctuations in the relevant stations before and after the two earthquakes,but the fluctuation range before and after the earthquake was small.Compared with the water level change of the reservoir,the adjustment of the regional stress is more likely to have a substantial impact on the travel time changes of the relevant stations.展开更多
The North-South Seismic Belt was analyzed using gravity observation data from 2011 to 2015, and the nontidal analysis results show that there was a nonlinear gravity change at both the Chengdu and Guza seismostations ...The North-South Seismic Belt was analyzed using gravity observation data from 2011 to 2015, and the nontidal analysis results show that there was a nonlinear gravity change at both the Chengdu and Guza seismostations one month before the Leshan M5.0 earthquake.展开更多
To study the crustal movement in the vicinity of the epicenter before the Zhangye MS5.0 earthquake in 2019, the characteristics of crustal deformation before the earthquake are discussed through the GPS velocity field...To study the crustal movement in the vicinity of the epicenter before the Zhangye MS5.0 earthquake in 2019, the characteristics of crustal deformation before the earthquake are discussed through the GPS velocity field analysis based on the CMONOC data observed from GPS. The baseline time series between two continuous GPS stations and the strain time series of an area among several stations are analyzed in the epicenter area. The resulting time series of baseline azimuth around the epicenter reflects that the energy of the fault in the northern margin of Qilian Mountain is accumulated continuously before 2017. Besides,the movement trend of azimuth slows down after 2017,indicating the stress accumulation on both sides of the seismogenic fault zone has reached a certain degree. The first shear strain and EWdirection linear strain in the epicentral area of the Zhangye MS5.0 earthquake remain steady after 2017,and the surface strain rate decreases gradually after 2016. It is illustrated that there is an obvious deformation loss at the epicentral region three years before the earthquake,indicating that a certain degree of strain energy is accumulated in this area before the earthquake.展开更多
On Jan.31 of 2010,the Suining earthquake occurred at Suining City whch is located the center of Sichuan Basin.It is unusual for the strong earthquake to occur at the center of Sichuan Basin with a stable geotectonic e...On Jan.31 of 2010,the Suining earthquake occurred at Suining City whch is located the center of Sichuan Basin.It is unusual for the strong earthquake to occur at the center of Sichuan Basin with a stable geotectonic environment and a low-level historical seismicity.The macro-epicenter of the earthquake is located at Moxi town of Suining city,Sichuan province,China.The earthquake intensity of the epicenter area is degree VII,and the long axis of the isoseismal line trends in NE orientation.The Suining earthquake caused the collapse or destruction of 460 family houses.The earthquake focal mechanism solution and records of the near-field seismographic stations showed the earthquake occurred at the reverse fault at a depth 34 km.Based on the waveform and focal mechanism,we consider the Suning earthquake is triggered by the reverse fault and not by the gravitational collapse or man-made explosive sources.Basing on seismic refraction profile and borehole,we consider that the earthquake is triggered by the backthrust fault of Moxi anticline rooted in detachments at a depth 3-4 km.Furthermore,we infer that tectonic mechanism of the Suining(Ms5.0) Earthquake is driven by the horizontal crustal shortening and stress adjustment on a shallow detachment after the Wenchuan(Ms 8.0) earthquake.展开更多
The epicenter of the M5.0 earthquake occurring in Jinghe County, Xinjiang on October 16, 2011, is located in Tuoli Township. The intensity of the meizoseismal area is VI. The seismic damage investigation shows that th...The epicenter of the M5.0 earthquake occurring in Jinghe County, Xinjiang on October 16, 2011, is located in Tuoli Township. The intensity of the meizoseismal area is VI. The seismic damage investigation shows that the houses are mainly mud-clay style and the seismic damage characteristics take on an obvious regional nature. The damage degree varies relative to the field conditions.展开更多
基金funded by the Youth Seismic Regime Tracking Project of CEA(2023010129)。
文摘The 2022 Honghe M_(S)5.0 seismic event is intriguing due to its occurrence in the south of the Red River Fault,an area historically lacking seismic activities greater than M_(S)5.0.To elucidate the seismogenic mechanism and scrutinize stress-triggered interactions,we calculated co-seismic and post-seismic Coulomb stress alterations induced by nine historical seismic events(M≥6.0).The analysis reveals that these substantial seismic events provoked co-seismic stress augmentations of 1.409 bar and postseismic stress increments of 0.159 bar.Noteworthy seismic events,such as the 1833 Songming,1877Shiping,1913 Eshan,and 1970 Tonghai earthquakes,catalyzed the occurrence of the Honghe earthquake.Areas of heightened future seismic risk include the southern region of the Red River Fault and the eastern segments of the Shiping-Jianshui and Qujiang faults.Additionally,we assessed the correlation between the spatial distribution of aftershocks and the Coulomb stress shift triggered by the mainshock,taking into account the influence of calculation parameter settings.
基金support from the National Basic Research Program(No:2006CB202300)National Natural Science Foundation of China(Grant No:40739906)
文摘In January 2010, the Suining Ms5.0 earthquake occurred in central Sichuan Basin, with the epicenter in Moxi-Longnvsi structural belt and a focal depth of 10 km. Based on structural interpretations of seismic profiles in this area, we recognized a regional detachment fault located at a depth of 9-10 km in the Presinian basement of the Suining area, transferring its slipping from NW to SE orientation. This detachment fault slipped from NW to SE, and underwent several shears and bends, which caused the basement to be rolled in and the overlaying strata fold deformation. It formed a fault-bend fold in the Moxi area with an approximate slip of 4 km. Correspondingly, the formation of the Moxi anticline is related to the detachment fault. With the earthquake's epicenter on the ramp of the detachment fault, there is a new point of view that the Suining earthquake was caused by re-activation of this basement detachment fault. Since the Late Jurassic period, under the influence of regional tectonic stress, the detachment fault transfered its slip from the Longmen Mountains (LMS) thrust belt to the hinterland of the Sichuan Basin, and finally to the piedmont zone of southwest Huayingshan (HYS), which indicates that HYS might be the final front area of the LMS thrust belt.
基金supported by the Natural Science Research Project of the Colleges and Universities in Anhui Province(Grant No.KJ2020ZD34)the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102261503)the Postdoctoral Fund in Anhui Province(Grant No.2021B545)。
文摘The 1970 Tonghai earthquake, which occurred on January 5, 1970, in Tonghai County, Yunnan Province, China, triggered a large number of landslides. Since the occurrence of the earthquake, there have been a huge number of research reports on the seismogenic structure and earthquake mechanism, but rare reports on the seismic landslides. As the largest earthquake recorded in the Qujiang fault zone, the study on the coseismic landslides triggered by this earthquake are of great significance to the prevention and mitigation of earthquake-induced landslides in this region. In this study, we established a coseismic landslide inventory for the VⅢ–X seismic intensity areas of the Ms 7.7 Tonghai earthquake, and conducted spatial analysis on the coseismic landslides, mainly having analyzed the effect of the topographic factors, geological factors, and seismic factors on the development of the coseismic landslides. To enhance the understanding of this earthquake, we converted the earthquake epicenter and magnitude with empirical formulas based on the distributions and areas of the coseismic landslides. Comparing with coseismic landslides in other earthquake-hit areas, we found the capability that this earthquake could induce landslides is low. This study provides a useful supplement to the global coseismic landslide inventories and could be the basic data for seismic landslide assessment in this earthquake-prone region.
基金sponsored by the Yunnan Youth Seismology Science Fund Project(2018k08)the National Natural Science Foundation of China(41574059,41474048)the Science and Technology Special Fund,Yunnan Earthquake Agency(ZX2015-01,2018ZX04)
文摘On the basis of the airgun source signals recorded by the stations from January,2016 to June,2017,we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of each station.We used the Yunlong MS5.0 and Yangbi MS5.1 earthquakes as samples.According to regional characteristics,13 stations with high signal-to-noise ratios and complete data were selected(including 3 fixed stations and 10 active source stations).They are divided into four regions,and on the basis of the GNSS baseline data,the characteristics of regional wave velocity changes before and after the earthquake are analyzed.The results show that the station phase travel time change and the regional stress characteristics represented by the GNSS baseline data have good correlation in the short-term.Due to different degrees of regional stress,there are differences in the travel time changes of different stations in the four regions.Before the Yunlong MS5.0 and Yangbi MS5.1 earthquakes,with regional stress adjustment,there is an upward trend in the travel time changes of related stations in the adjacent areas of up to 0.02 s.The difference is that there are differences in the time nodes and duration of the travel time anomalies,and there is a reverse descent process after the Yangbi MS5.1 earthquake.There are different degrees of travel time fluctuations in the relevant stations before and after the two earthquakes,but the fluctuation range before and after the earthquake was small.Compared with the water level change of the reservoir,the adjustment of the regional stress is more likely to have a substantial impact on the travel time changes of the relevant stations.
基金supported by the Director Foundation of Institute of Seismology,China Earthquake Administration(201326123)the National Natural Science Foundation of China(41204058,41474064)the Ministry of Science and Technology major instrument special sub topic(2012YQ10022506)
文摘The North-South Seismic Belt was analyzed using gravity observation data from 2011 to 2015, and the nontidal analysis results show that there was a nonlinear gravity change at both the Chengdu and Guza seismostations one month before the Leshan M5.0 earthquake.
基金sponsored by the Fund of Science for Earthquake Resilience(XH21035Y,XH20057)the Earthquake Tracking Track of CEA(2020010211,2018010204)+1 种基金the Earthquake Science and Technology Development Fund of CEA(2016M02,2017IESLZ07)National Natural Science Foundation of China(51478444,41304048)。
文摘To study the crustal movement in the vicinity of the epicenter before the Zhangye MS5.0 earthquake in 2019, the characteristics of crustal deformation before the earthquake are discussed through the GPS velocity field analysis based on the CMONOC data observed from GPS. The baseline time series between two continuous GPS stations and the strain time series of an area among several stations are analyzed in the epicenter area. The resulting time series of baseline azimuth around the epicenter reflects that the energy of the fault in the northern margin of Qilian Mountain is accumulated continuously before 2017. Besides,the movement trend of azimuth slows down after 2017,indicating the stress accumulation on both sides of the seismogenic fault zone has reached a certain degree. The first shear strain and EWdirection linear strain in the epicentral area of the Zhangye MS5.0 earthquake remain steady after 2017,and the surface strain rate decreases gradually after 2016. It is illustrated that there is an obvious deformation loss at the epicentral region three years before the earthquake,indicating that a certain degree of strain energy is accumulated in this area before the earthquake.
基金the National Natural Science Foundation of China (Grant No. 40841010,40972083,41172162)the National Science and Technology Support Program (Grant nNo. 2006BAC13B02-107,2006BAC13B01-604) for the funding
文摘On Jan.31 of 2010,the Suining earthquake occurred at Suining City whch is located the center of Sichuan Basin.It is unusual for the strong earthquake to occur at the center of Sichuan Basin with a stable geotectonic environment and a low-level historical seismicity.The macro-epicenter of the earthquake is located at Moxi town of Suining city,Sichuan province,China.The earthquake intensity of the epicenter area is degree VII,and the long axis of the isoseismal line trends in NE orientation.The Suining earthquake caused the collapse or destruction of 460 family houses.The earthquake focal mechanism solution and records of the near-field seismographic stations showed the earthquake occurred at the reverse fault at a depth 34 km.Based on the waveform and focal mechanism,we consider the Suning earthquake is triggered by the reverse fault and not by the gravitational collapse or man-made explosive sources.Basing on seismic refraction profile and borehole,we consider that the earthquake is triggered by the backthrust fault of Moxi anticline rooted in detachments at a depth 3-4 km.Furthermore,we infer that tectonic mechanism of the Suining(Ms5.0) Earthquake is driven by the horizontal crustal shortening and stress adjustment on a shallow detachment after the Wenchuan(Ms 8.0) earthquake.
基金Supported by the Earthquake Science Foundation Project of Earthguake Administration of Xinjiang Uygur Autonomous Region ( 201112)the Program of Earthquake Risk Assessment on Actine Faults in Key Monitoring Region of China ( 2200409)
文摘The epicenter of the M5.0 earthquake occurring in Jinghe County, Xinjiang on October 16, 2011, is located in Tuoli Township. The intensity of the meizoseismal area is VI. The seismic damage investigation shows that the houses are mainly mud-clay style and the seismic damage characteristics take on an obvious regional nature. The damage degree varies relative to the field conditions.