In this study, volatile compounds present in Toona sinensis (A. Juss.) Roem (TS) were investigated and their characteristic aromatic components were identified using Headspace Solid-phase Microextraction (HS-SPME) fol...In this study, volatile compounds present in Toona sinensis (A. Juss.) Roem (TS) were investigated and their characteristic aromatic components were identified using Headspace Solid-phase Microextraction (HS-SPME) followed by Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Olfactometry (GC-O). The optimum conditions for extracting the volatiles from TS were achieved with the experimental parameters including the use of a 65 μm polydimethylsiloxane/divinyl benzene (PDMS/DVB) fibre, an extraction temperature of 40℃ and an extraction time of 30 min. Under these conditions, 56 volatile compounds were separated and 53 were identified by GC-MS. Among them, 21 sulfide compounds (42.146%) and 27 terpenes(55.984%) were found to be the major components. The sample was analyzed by GC-O and 26 elutes were sniffed and their sensory descriptions evaluated by an odor panelists. Analysis of the data indicated, two compounds cis and trans isomers of 2-Mercapto-3,4-dimethyl-2,3-dihydrothiophene were major contributors to the characteristic aroma of TS.展开更多
建立了以分光光度法测定天然抗氧化剂清除2,2-二苯基-1-苦肼基(DPPH)自由基能力的方法。通过测定芦丁、檞皮素、抗坏血酸、没食子酸的DPPH自由基清除率曲线,提出以IC50值作为评价试样清除DPPH自由基能力的指标,并将此应用于测定香椿叶...建立了以分光光度法测定天然抗氧化剂清除2,2-二苯基-1-苦肼基(DPPH)自由基能力的方法。通过测定芦丁、檞皮素、抗坏血酸、没食子酸的DPPH自由基清除率曲线,提出以IC50值作为评价试样清除DPPH自由基能力的指标,并将此应用于测定香椿叶提取物清除DPPH自由基的能力。通过测定香椿叶提取物与DPPH溶液反应后,DPPH溶液在517 nm处的吸光度的变化,确定了测定香椿叶提取物清除DPPH自由基能力的条件。即:测定波长517 nm,反应时间50 m in。在此条件下测得的以总黄酮计的香椿叶提取物清除DPPH自由基的IC50值为22.026。展开更多
文摘In this study, volatile compounds present in Toona sinensis (A. Juss.) Roem (TS) were investigated and their characteristic aromatic components were identified using Headspace Solid-phase Microextraction (HS-SPME) followed by Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Olfactometry (GC-O). The optimum conditions for extracting the volatiles from TS were achieved with the experimental parameters including the use of a 65 μm polydimethylsiloxane/divinyl benzene (PDMS/DVB) fibre, an extraction temperature of 40℃ and an extraction time of 30 min. Under these conditions, 56 volatile compounds were separated and 53 were identified by GC-MS. Among them, 21 sulfide compounds (42.146%) and 27 terpenes(55.984%) were found to be the major components. The sample was analyzed by GC-O and 26 elutes were sniffed and their sensory descriptions evaluated by an odor panelists. Analysis of the data indicated, two compounds cis and trans isomers of 2-Mercapto-3,4-dimethyl-2,3-dihydrothiophene were major contributors to the characteristic aroma of TS.
文摘建立了以分光光度法测定天然抗氧化剂清除2,2-二苯基-1-苦肼基(DPPH)自由基能力的方法。通过测定芦丁、檞皮素、抗坏血酸、没食子酸的DPPH自由基清除率曲线,提出以IC50值作为评价试样清除DPPH自由基能力的指标,并将此应用于测定香椿叶提取物清除DPPH自由基的能力。通过测定香椿叶提取物与DPPH溶液反应后,DPPH溶液在517 nm处的吸光度的变化,确定了测定香椿叶提取物清除DPPH自由基能力的条件。即:测定波长517 nm,反应时间50 m in。在此条件下测得的以总黄酮计的香椿叶提取物清除DPPH自由基的IC50值为22.026。