Previously, the choice of prosthetic implant-retained overdentures has depended on data from previous studies about the retention-fatigue strength of the attachment system selected. Little or no data have been availab...Previously, the choice of prosthetic implant-retained overdentures has depended on data from previous studies about the retention-fatigue strength of the attachment system selected. Little or no data have been available on the correlation between the attachment system selected and the overdenture support configuration. The purpose of the present study was to evaluate the retention force and fatigue resistance of three attachment systems and four support designs of overdenture prosthesis. Four lower edentulous acrylic models were prepared and eight combinations of attachments groups were investigated in the study. These included: O-Rings with mini-dental implants (MDIs), Dalbo elliptic with Dalbo Rotex and fabricated flexible acrylic attachments with both MDI and Dalbo Rotex. The study was divided into four test groups: groups A and B, controls, and groups C and D, experimental groups. Control group A contained three overdenture supports: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with Dalbo Rotex screwed in. Control group B contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with Dalbo Rotex screwed in at the same MDI position, but on the left side of the model. Experimental group C contained three overdenture support foundations: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with MDI screwed in. Experimental group D contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with MDIs screwed in at the same MDI position, but on the left side of the model. Each group was further divided into two subgroups according to attachment type used. Five samples were prepared for each group. Retention force (N) values were recorded initially (0 cycles) and after 360, 720, 1440 and 2880 insertion and removal cycles. During the tensile test a cross-head speed of 10 mm/min was applied. Values of absolute force (AF) and relative force (RF) were statistically analyzed by two-way ANOVA and multiple comparison Tukey’s tests between groups and cycles periods. The results of fatigue tests showed a 50% reduction in retention force in the subgroups with flexible attachments. A triangular design of overdenture support foundations with O-Ring attachments revealed the lowest value of AF and a relatively high reduction in RF. The four overdenture support designs with flexible acrylic attachments improved the retention force and reduced the fatigue retention. Furthermore, the results of the investigation demonstrate that flexible acrylic attachments for both teeth and implant-supported overdentures offer a wide range of retention forces.展开更多
Hydroxyapatite (HA) bio-ceramics implant tooth was tested through animal experiment and clinical application. HA tooth was placed into the fresh extraction socket. At first, HA tooth was chosen and implanted as fixed ...Hydroxyapatite (HA) bio-ceramics implant tooth was tested through animal experiment and clinical application. HA tooth was placed into the fresh extraction socket. At first, HA tooth was chosen and implanted as fixed maxillary front tooth in domestic rabbit immediately after extraction of tooth. Three to six months later satisfactory osseointegration between implanted HA teeth and periodontinum was observed. Clinically, 28 teeth in 25 patients were implanted with suitable HA teeth, chosen according to dental X-ray and models of different kinds of HA dental root. Crowning prosthesis with visible lightsolidfied material made the HA tooth wholesome and nice looking. Implantation and fixation of the HA teeth into the fresh extraction sockets of all the patients were successful.展开更多
We introduced the hydrophilic groups to acrylic bone cement to improve compliance and achieve more interdigitation between the bone and the acrylic bone cement in order to create better substrates for immediate loadin...We introduced the hydrophilic groups to acrylic bone cement to improve compliance and achieve more interdigitation between the bone and the acrylic bone cement in order to create better substrates for immediate loading. FTIR-ATR, contact angle, and maximum breach torque were employed for measurement. The results reveal that the introduction of hydrophilic functional groups has increased PMMA's surface hydrophilicity after contact angle test. FTIR-ATR results suggest the hydrophilic groups participate in the polymerization reactions, and maximum breach torque of the hydrophilic acrylic bone cements is near 110 Ncm torque. Those effects make it possible for conventional acrylic bone cement application in immediate loading of dental implant.展开更多
[Objectives] To explore the flexural strength of 3D printed titanium bone bionic dental implants and provide a scientific basis for the clinical application of 3D printed porous bionic bone dental implants. [Methods] ...[Objectives] To explore the flexural strength of 3D printed titanium bone bionic dental implants and provide a scientific basis for the clinical application of 3D printed porous bionic bone dental implants. [Methods] The cone-beam CT( CBCT) image information of 20 premolars extracted by orthodontic requirement was collected,and a new porous bone bionic dental implant was produced using modeling software and 3D printer. The premolars were divided into two groups( A and B). The universal testing machine was used to test the flexural strength of the two groups and the difference in flexural strength between the two groups was compared through statistics. [Results]Twenty 3D printed porous titanium bone bionic implants were accurately produced; the morphology of group A and group B were extremely similar to each other; the average flexural strength of group A was 2 767. 92 N,while the average flexural strength of group B was 778. 77 N,showing that the average flexural strength of group A was significantly higher than that of group B,and the difference was statistically significant( P < 0. 05).[Conclusions]The personalized porous structure root implants produced by 3D printing technology are very similar to the target tooth morphology,and show high accuracy and small error of production. Besides,the flexural strength of 3D printed personalized porous structure root implants can fully meet the requirements of the maximum occlusal force for dental implant restoration. It is expected to provide a scientific basis for clinical application of 3 D printed porous bionic bone tooth implants.展开更多
A tooth is a complex biological organ and consists of multiple tissues including the enamel, dentin, cementum and pulp. Tooth loss is the most common organ failure. Can a tooth be regenerated? Can adult stem cells be...A tooth is a complex biological organ and consists of multiple tissues including the enamel, dentin, cementum and pulp. Tooth loss is the most common organ failure. Can a tooth be regenerated? Can adult stem cells be orchestrated to regenerate tooth structures such as the enamel, dentin, cementum and dental pulp, or even an entire tooth? If not, what are the therapeutically viable sources of stem cells for tooth regeneration? Do stem cells necessarily need to be taken out of the body, and manipulated ex vivo before they are transplanted for tooth regeneration? How can regenerated teeth be economically competitive with dental implants? Would it be possible to make regenerated teeth affordable by a large segment of the population worldwide? This review article explores existing and visionary approaches that address some of the above-mentioned questions. Tooth regeneration represents a revolution in stomatology as a shift in the paradigm from repair to regeneration: repair is by metal or artificial materials whereas regeneration is by biological restoration. Tooth regeneration is an extension of the concepts in the broad field of regenerative medicine to restore a tissue defect to its original form and function by biological substitutes.展开更多
BACKGROUND There are some challenges concerning immediate implant placement in the molar region.Platelet-rich fibrin(PRF),an autologous biomaterial,has been used widely for periodontal intra-bony defects,sinus augment...BACKGROUND There are some challenges concerning immediate implant placement in the molar region.Platelet-rich fibrin(PRF),an autologous biomaterial,has been used widely for periodontal intra-bony defects,sinus augmentation,socket preservation,and gingival recession.However,the literature remains scarce for reports on immediate implants with PRF,particularly in the case of fresh molar extraction socket.CASE SUMMARY The patient was a 43-year-old woman with maxillary molar vertical crown-root fracture.She underwent flapless immediate implant placement into the fresh molar socket with PRF.At the follow-up visit 15 d post procedure,the vascularization of soft tissue was visible.There was no swelling or pain after the surgery.Six months postoperatively,the regeneration of bone and soft tissues was visible.Subsequently,the definitive restoration was placed.The patient was satisfied with the aesthetic outcomes.CONCLUSION The flapless immediate implant placement into the fresh molar socket with PRF is a feasible procedure.This case report demonstrates that PRF promotes bone and soft tissue regeneration apart from having an enhanced anti-inflammatory ability.Furthermore,the procedure involves a minimally invasive technique,thus reducing the surgical complexity.展开更多
文摘Previously, the choice of prosthetic implant-retained overdentures has depended on data from previous studies about the retention-fatigue strength of the attachment system selected. Little or no data have been available on the correlation between the attachment system selected and the overdenture support configuration. The purpose of the present study was to evaluate the retention force and fatigue resistance of three attachment systems and four support designs of overdenture prosthesis. Four lower edentulous acrylic models were prepared and eight combinations of attachments groups were investigated in the study. These included: O-Rings with mini-dental implants (MDIs), Dalbo elliptic with Dalbo Rotex and fabricated flexible acrylic attachments with both MDI and Dalbo Rotex. The study was divided into four test groups: groups A and B, controls, and groups C and D, experimental groups. Control group A contained three overdenture supports: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with Dalbo Rotex screwed in. Control group B contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with Dalbo Rotex screwed in at the same MDI position, but on the left side of the model. Experimental group C contained three overdenture support foundations: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with MDI screwed in. Experimental group D contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with MDIs screwed in at the same MDI position, but on the left side of the model. Each group was further divided into two subgroups according to attachment type used. Five samples were prepared for each group. Retention force (N) values were recorded initially (0 cycles) and after 360, 720, 1440 and 2880 insertion and removal cycles. During the tensile test a cross-head speed of 10 mm/min was applied. Values of absolute force (AF) and relative force (RF) were statistically analyzed by two-way ANOVA and multiple comparison Tukey’s tests between groups and cycles periods. The results of fatigue tests showed a 50% reduction in retention force in the subgroups with flexible attachments. A triangular design of overdenture support foundations with O-Ring attachments revealed the lowest value of AF and a relatively high reduction in RF. The four overdenture support designs with flexible acrylic attachments improved the retention force and reduced the fatigue retention. Furthermore, the results of the investigation demonstrate that flexible acrylic attachments for both teeth and implant-supported overdentures offer a wide range of retention forces.
文摘Hydroxyapatite (HA) bio-ceramics implant tooth was tested through animal experiment and clinical application. HA tooth was placed into the fresh extraction socket. At first, HA tooth was chosen and implanted as fixed maxillary front tooth in domestic rabbit immediately after extraction of tooth. Three to six months later satisfactory osseointegration between implanted HA teeth and periodontinum was observed. Clinically, 28 teeth in 25 patients were implanted with suitable HA teeth, chosen according to dental X-ray and models of different kinds of HA dental root. Crowning prosthesis with visible lightsolidfied material made the HA tooth wholesome and nice looking. Implantation and fixation of the HA teeth into the fresh extraction sockets of all the patients were successful.
文摘We introduced the hydrophilic groups to acrylic bone cement to improve compliance and achieve more interdigitation between the bone and the acrylic bone cement in order to create better substrates for immediate loading. FTIR-ATR, contact angle, and maximum breach torque were employed for measurement. The results reveal that the introduction of hydrophilic functional groups has increased PMMA's surface hydrophilicity after contact angle test. FTIR-ATR results suggest the hydrophilic groups participate in the polymerization reactions, and maximum breach torque of the hydrophilic acrylic bone cements is near 110 Ncm torque. Those effects make it possible for conventional acrylic bone cement application in immediate loading of dental implant.
文摘[Objectives] To explore the flexural strength of 3D printed titanium bone bionic dental implants and provide a scientific basis for the clinical application of 3D printed porous bionic bone dental implants. [Methods] The cone-beam CT( CBCT) image information of 20 premolars extracted by orthodontic requirement was collected,and a new porous bone bionic dental implant was produced using modeling software and 3D printer. The premolars were divided into two groups( A and B). The universal testing machine was used to test the flexural strength of the two groups and the difference in flexural strength between the two groups was compared through statistics. [Results]Twenty 3D printed porous titanium bone bionic implants were accurately produced; the morphology of group A and group B were extremely similar to each other; the average flexural strength of group A was 2 767. 92 N,while the average flexural strength of group B was 778. 77 N,showing that the average flexural strength of group A was significantly higher than that of group B,and the difference was statistically significant( P < 0. 05).[Conclusions]The personalized porous structure root implants produced by 3D printing technology are very similar to the target tooth morphology,and show high accuracy and small error of production. Besides,the flexural strength of 3D printed personalized porous structure root implants can fully meet the requirements of the maximum occlusal force for dental implant restoration. It is expected to provide a scientific basis for clinical application of 3 D printed porous bionic bone tooth implants.
基金supported by RC2DE020767 from the National Institute of Dental and Craniofacial Research (NIDCR), the National Institutes of Health (NIH)
文摘A tooth is a complex biological organ and consists of multiple tissues including the enamel, dentin, cementum and pulp. Tooth loss is the most common organ failure. Can a tooth be regenerated? Can adult stem cells be orchestrated to regenerate tooth structures such as the enamel, dentin, cementum and dental pulp, or even an entire tooth? If not, what are the therapeutically viable sources of stem cells for tooth regeneration? Do stem cells necessarily need to be taken out of the body, and manipulated ex vivo before they are transplanted for tooth regeneration? How can regenerated teeth be economically competitive with dental implants? Would it be possible to make regenerated teeth affordable by a large segment of the population worldwide? This review article explores existing and visionary approaches that address some of the above-mentioned questions. Tooth regeneration represents a revolution in stomatology as a shift in the paradigm from repair to regeneration: repair is by metal or artificial materials whereas regeneration is by biological restoration. Tooth regeneration is an extension of the concepts in the broad field of regenerative medicine to restore a tissue defect to its original form and function by biological substitutes.
基金Supported by Interdisciplinary Project for Ph.D. students of Jilin University,No.10183201846 X.S
文摘BACKGROUND There are some challenges concerning immediate implant placement in the molar region.Platelet-rich fibrin(PRF),an autologous biomaterial,has been used widely for periodontal intra-bony defects,sinus augmentation,socket preservation,and gingival recession.However,the literature remains scarce for reports on immediate implants with PRF,particularly in the case of fresh molar extraction socket.CASE SUMMARY The patient was a 43-year-old woman with maxillary molar vertical crown-root fracture.She underwent flapless immediate implant placement into the fresh molar socket with PRF.At the follow-up visit 15 d post procedure,the vascularization of soft tissue was visible.There was no swelling or pain after the surgery.Six months postoperatively,the regeneration of bone and soft tissues was visible.Subsequently,the definitive restoration was placed.The patient was satisfied with the aesthetic outcomes.CONCLUSION The flapless immediate implant placement into the fresh molar socket with PRF is a feasible procedure.This case report demonstrates that PRF promotes bone and soft tissue regeneration apart from having an enhanced anti-inflammatory ability.Furthermore,the procedure involves a minimally invasive technique,thus reducing the surgical complexity.