期刊文献+
共找到12,806篇文章
< 1 2 250 >
每页显示 20 50 100
基于BERTopic模型的国外信息资源管理研究进展分析 被引量:2
1
作者 杨思洛 吴丽娟 《情报理论与实践》 北大核心 2024年第2期189-197,共9页
[目的/意义]文章从已有研究成果中提取主题,梳理主要研究方向,展示主题热度变化趋势,为了解和评估国外信息资源管理(IRM)研究发展现状与趋势提供参考。[方法/过程]采用新兴BERTopic模型对2013—2022年期间WoS数据库中IRM相关文献进行主... [目的/意义]文章从已有研究成果中提取主题,梳理主要研究方向,展示主题热度变化趋势,为了解和评估国外信息资源管理(IRM)研究发展现状与趋势提供参考。[方法/过程]采用新兴BERTopic模型对2013—2022年期间WoS数据库中IRM相关文献进行主题提取与识别,结合相关主题词及主题距离划分研究方向,并利用动态主题模型揭示国外IRM领域的演变过程。[结果/结论]国外IRM近10年的研究可分为59个主题,可归纳为信息技术及应用、企业信息管理、图书馆管理与服务、健康信息管理、信息用户与服务、IRM基本理论与方法、文献计量与评价7个方向。大多数主题的研究热度变化偏向稳定的趋势,数字化建设、开放数据等部分主题热度逐渐上涨,而外包、知识管理等少数主题热度退却。 展开更多
关键词 国外信息资源管理 主题模型 BERtopic 研究主题 研究进展
下载PDF
基于BERTopic模型的网络暴力事件衍生舆情探测 被引量:2
2
作者 胡凯茜 李欣 王龙腾 《情报杂志》 北大核心 2024年第7期146-153,共8页
[研究目的]在海量用户生成内容中及时探测和剖析网络暴力事件的衍生舆情能够为舆情事件链的演化分析、同类舆情的研判介入、衍生事件的监测预警提供理论支持。[研究方法]使用BERTopic模型对短文本内容主题建模并采用聚类的方式展示主题... [研究目的]在海量用户生成内容中及时探测和剖析网络暴力事件的衍生舆情能够为舆情事件链的演化分析、同类舆情的研判介入、衍生事件的监测预警提供理论支持。[研究方法]使用BERTopic模型对短文本内容主题建模并采用聚类的方式展示主题的潜在层次结构。根据词向量余弦相似度设计主题衍生度的计量算法,同时融合词共现网络在文档-词语层面信息捕捉的优势以及桑基图直观演示舆情演化过程的特点,衡量主题间的影响力与衍生关系。[研究结论]在开源数据集下多组主题模型的对照实验中,BERTopic模型在短文本建模以及下游任务的平均得分提高2.13%。在网络暴力热点事件的应用实例中,多维细粒度分析与交互式可视化方法可达到直观展示暴力事件的主题聚类、词义关联与演化态势的效果,实现网络暴力事件衍生舆情的探测与分析。 展开更多
关键词 网络舆情 网络暴力 衍生舆情 舆情监测 短文本 主题建模 BERtopic模型
下载PDF
基于BERTopic算法的引文主题实证分析——以一篇高被引诺贝尔生理学或医学奖论文为例
3
作者 郭倩影 赵丹群 《情报理论与实践》 北大核心 2024年第10期183-189,182,共8页
[目的/意义]引文主题识别/分析(CTR/CTA)是引文内容分析(CCA)的一项重要研究议题,通过对引文语料中蕴涵主题信息的识别和提取,可望为论文学术贡献评价、知识扩散及演化分析等问题的解决提供新的研究思路。[过程/方法]以一篇高被引诺贝... [目的/意义]引文主题识别/分析(CTR/CTA)是引文内容分析(CCA)的一项重要研究议题,通过对引文语料中蕴涵主题信息的识别和提取,可望为论文学术贡献评价、知识扩散及演化分析等问题的解决提供新的研究思路。[过程/方法]以一篇高被引诺贝尔生理学或医学获奖关键论文为例,采用BERTopic算法对其引文句语料进行主题识别,并对识别出的引文主题展开多个维度的分析与讨论。[结果/结论]对高被引论文开展引文主题识别分析,有助于更全面细致地揭示其学术贡献内容及演化趋势;BERTopic算法能较好识别案例文献的多个引文主题,且不同引文主题的施引文献特征分布不尽相同;对引文主题重要性、演化趋势及其与原文主题差异性的分析,能多维度刻画研究同行对案例文献学术贡献的认识,表明CTR/CTA研究对学术论文评价具有深入探索价值。 展开更多
关键词 BERtopic算法 引文主题识别 引文主题分析 引文内容分析 学术论文评价
下载PDF
基于BERTopic的中药治疗眼科疾病的处方用药规律分析
4
作者 卢昕怡 李弘辰 +1 位作者 吴双 罗杰 《浙江临床医学》 2024年第6期899-901,共3页
目的分析中医药治疗眼科疾病的处方用药规律,探讨治疗眼科疾病的更多潜在配伍组合。方法收集眼科专家门诊的中医处方并整理筛选,采用Python 3.9.10中BERTopic算法对复发性虹膜睫状体炎的所有处方进行分析,得到药物关键词聚类组合;采用SP... 目的分析中医药治疗眼科疾病的处方用药规律,探讨治疗眼科疾病的更多潜在配伍组合。方法收集眼科专家门诊的中医处方并整理筛选,采用Python 3.9.10中BERTopic算法对复发性虹膜睫状体炎的所有处方进行分析,得到药物关键词聚类组合;采用SPSS 25.0对中药处方数据进行层次聚类,比较两种方法的优劣和药物配伍组合的挖掘效果。结果采用BERTopic算法得到核心药物关键词组合累计2种,包括酒地龙、土茯苓、大青叶、葎草等;应用层次聚类得到的药物组合包括葎草、土茯苓、菝葜等。应用BERTopic技术的算法具有不易受噪声数据影响、提高聚类效率、增强对于处方文本语义理解等诸多优势。结论使用基于BERTopic技术的算法在寻找疾病潜在中药配伍中表现良好,潜力较大,能为眼科疾病的中药配伍组合提供更多参考方向。 展开更多
关键词 数据挖掘 用药规律 眼科疾病 BERtopic模型
下载PDF
Analyzing topics in social media for improving digital twinning based product development
5
作者 Wenyi Tang Ling Tian +1 位作者 Xu Zheng Ke Yan 《Digital Communications and Networks》 SCIE CSCD 2024年第2期273-281,共9页
Digital twinning enables manufacturers to create digital representations of physical entities,thus implementing virtual simulations for product development.Previous efforts of digital twinning neglect the decisive con... Digital twinning enables manufacturers to create digital representations of physical entities,thus implementing virtual simulations for product development.Previous efforts of digital twinning neglect the decisive consumer feedback in product development stages,failing to cover the gap between physical and digital spaces.This work mines real-world consumer feedbacks through social media topics,which is significant to product development.We specifically analyze the prevalent time of a product topic,giving an insight into both consumer attention and the widely-discussed time of a product.The primary body of current studies regards the prevalent time prediction as an accompanying task or assumes the existence of a preset distribution.Therefore,these proposed solutions are either biased in focused objectives and underlying patterns or weak in the capability of generalization towards diverse topics.To this end,this work combines deep learning and survival analysis to predict the prevalent time of topics.We propose a specialized deep survival model which consists of two modules.The first module enriches input covariates by incorporating latent features of the time-varying text,and the second module fully captures the temporal pattern of a rumor by a recurrent network structure.Moreover,a specific loss function different from regular survival models is proposed to achieve a more reasonable prediction.Extensive experiments on real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods. 展开更多
关键词 Digital twinning Product development topic analysis Social media
下载PDF
A Video Captioning Method by Semantic Topic-Guided Generation
6
作者 Ou Ye Xinli Wei +2 位作者 Zhenhua Yu Yan Fu Ying Yang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1071-1093,共23页
In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a decoder.However,this kind ofmethod is de... In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a decoder.However,this kind ofmethod is dependent on a single video input source and few visual labels,and there is a problem with semantic alignment between video contents and generated natural sentences,which are not suitable for accurately comprehending and describing the video contents.To address this issue,this paper proposes a video captioning method by semantic topic-guided generation.First,a 3D convolutional neural network is utilized to extract the spatiotemporal features of videos during the encoding.Then,the semantic topics of video data are extracted using the visual labels retrieved from similar video data.In the decoding,a decoder is constructed by combining a novel Enhance-TopK sampling algorithm with a Generative Pre-trained Transformer-2 deep neural network,which decreases the influence of“deviation”in the semantic mapping process between videos and texts by jointly decoding a baseline and semantic topics of video contents.During this process,the designed Enhance-TopK sampling algorithm can alleviate a long-tail problem by dynamically adjusting the probability distribution of the predicted words.Finally,the experiments are conducted on two publicly used Microsoft Research Video Description andMicrosoft Research-Video to Text datasets.The experimental results demonstrate that the proposed method outperforms several state-of-art approaches.Specifically,the performance indicators Bilingual Evaluation Understudy,Metric for Evaluation of Translation with Explicit Ordering,Recall Oriented Understudy for Gisting Evaluation-longest common subsequence,and Consensus-based Image Description Evaluation of the proposed method are improved by 1.2%,0.1%,0.3%,and 2.4% on the Microsoft Research Video Description dataset,and 0.1%,1.0%,0.1%,and 2.8% on the Microsoft Research-Video to Text dataset,respectively,compared with the existing video captioning methods.As a result,the proposed method can generate video captioning that is more closely aligned with human natural language expression habits. 展开更多
关键词 Video captioning encoder-decoder semantic topic jointly decoding Enhance-TopK sampling
下载PDF
Pain perception enhancement in consecutive secondeye phacoemulsification cataract surgeries under topical anesthesia
7
作者 Jia-Wei Luo Yan-Hua Chen +3 位作者 Jian-Feng Yu Yi-Xun Chen Min Ji Huai-Jin Guan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第8期1510-1518,共9页
Cataract is the main cause of visual impairment and blindness worldwide while the only effective cure for cataract is still surgery.Consecutive phacoemulsification under topical anesthesia has been the routine procedu... Cataract is the main cause of visual impairment and blindness worldwide while the only effective cure for cataract is still surgery.Consecutive phacoemulsification under topical anesthesia has been the routine procedure for cataract surgery.However,patients often grumbled that they felt more painful during the second-eye surgery compared to the first-eye surgery.The intraoperative pain experience has negative influence on satisfaction and willingness for second-eye cataract surgery of patients with bilateral cataracts.Intraoperative ocular pain is a complicated process induced by the nociceptors activation in the peripheral nervous system.Immunological,neuropsychological,and pharmacological factors work together in the enhancement of intraoperative pain.Accumulating published literatures have focused on the pain enhancement during the secondeye phacoemulsification surgeries.In this review,we searched PubMed database for articles associated with pain perception differences between consecutive cataract surgeries published up to Feb.1,2024.We summarized the recent research progress in mechanisms and interventions for pain perception enhancement in consecutive secondeye phacoemulsification cataract surgeries.This review aimed to provide novel insights into strategies for improving patients’intraoperative experience in second-eye cataract surgeries. 展开更多
关键词 ocular pain cataract surgery topical anesthesia intraoperative experience second-eye phacoemulsification
下载PDF
基于BERTopic模型的数字政府治理领域的主题识别与内容分析
8
作者 高凡 徐思佳 《情报理论与实践》 北大核心 2024年第8期95-106,共12页
[目的/意义]在信息技术创新、政府数字化转型的背景下,中国学术界输出的“数字政府治理”相关研究体量较大,现阶段亟待对其进行科学整理和综述概览,以回应“政府治理现代化”目标对理论研究的新要求。[方法/过程]以2011-2023年间中国知... [目的/意义]在信息技术创新、政府数字化转型的背景下,中国学术界输出的“数字政府治理”相关研究体量较大,现阶段亟待对其进行科学整理和综述概览,以回应“政府治理现代化”目标对理论研究的新要求。[方法/过程]以2011-2023年间中国知网数据库收录的有关数字政府治理研究的1829篇文献为数据来源,借助深度学习模型BERTopic和文献计量法CiteSpace相互验证分析数字政府治理领域的研究阶段、研究关键词、研究热点主题及内容等,使得结果具有高准确性和强解释性,以科学有效地探测主题取向及特征,展望数字政府治理领域的未来研究方向。[结果/结论]中国数字政府治理研究在过去的10年间发展迅猛,已成为学者探索的热点论域;现有文献研究热点整体上聚焦于价值导向、治理模式进化、技术工具嵌入;重点主题关注的是“政府数据开放共享研究”“基于数字技术的政务服务改革研究”“城乡场域下的数字化治理研究”“数字政府治理水平的评估研究”及“数字化转型下具体治理领域的实践研究”。未来,数字政府治理仍然是一个具有持续性拓展空间的研究领域,将逐步实现数字政府治理的更广场域触达、精准滴灌、多项学科融合和技术实用主义。 展开更多
关键词 数字政府 政府治理 主题识别 BERtopic 主题模型
下载PDF
基于Citation Topic的领域期刊主题演化研究——以行为医学为例
9
作者 张琳 孙奥琦 高岩 《科技传播》 2024年第18期66-69,共4页
基于论文层面的Citation Topic分类体系,通过测度行为医学领域SCI及SSCI期刊引文主题变动情况,展现国际行为医学领域研究重点以及相关支撑学科的演化。
关键词 Citation topic 期刊 研究主题 行为医学
下载PDF
基于BERTopic模型的组织成员工作投入研究的主题提取
10
作者 金国峰 陈泽峰 《情报探索》 2024年第8期73-81,共9页
[目的/意义]旨在通过科学计量方法,挖掘“组织成员工作投入”文献资源中蕴藏的主题,为后续研究提供参考和启示。[方法/过程]搜集中国知网学术期刊数据库中2002-2023年相关文献的摘要和发表年份,经过文本预处理,使用BERTopic模型进行主... [目的/意义]旨在通过科学计量方法,挖掘“组织成员工作投入”文献资源中蕴藏的主题,为后续研究提供参考和启示。[方法/过程]搜集中国知网学术期刊数据库中2002-2023年相关文献的摘要和发表年份,经过文本预处理,使用BERTopic模型进行主题提取和可视化分析。[结果/结论]国内现有的关于组织成员工作投入的研究可以分为研究内容和研究方法两大主题集群,均表现出多样化态势。主题时序演化分析揭示了组织成员工作投入研究正逐步转向对个体差异和心理健康的关注。未来研究可从新技术的影响、工作投入动态变化以及跨学科合作等方面进行拓展。 展开更多
关键词 工作投入 主题提取 BERtopic 可视化分析
下载PDF
基于BERTopic模型的公众心理应激信息表征分析
11
作者 刘洋 彭顺 钱晓悦 《情报探索》 2024年第8期41-48,共8页
[目的/意义]在后疫情时代的背景下,探讨心理应激的信息表征对公众的心理健康建设及社会发展具有重要意义。[方法/过程]使用BERTopic模型对问答数据进行匹配和热度分析,探究不同主题下用户的关注内容和关注程度。[结果/结论]用户心理应... [目的/意义]在后疫情时代的背景下,探讨心理应激的信息表征对公众的心理健康建设及社会发展具有重要意义。[方法/过程]使用BERTopic模型对问答数据进行匹配和热度分析,探究不同主题下用户的关注内容和关注程度。[结果/结论]用户心理应激信息表征主要集中在生理反应、认知反应、情感反应、行为反应4种类型。本研究从后疫情时代的视角出发探讨心理应激的信息表征,能够以常态化心理应激干预为目标为决策者提出长期心理支持服务建议,推进线上线下并举的心理服务。 展开更多
关键词 主题模型 心理应激 BERtopic 问答平台 后疫情时代
下载PDF
基于BERTopic主题建模的延时现场救护研究趋势与热点分析
12
作者 辛然 李雪玉 房玉丽 《军事护理》 CSCD 北大核心 2024年第9期50-53,58,共5页
目的分析2009~2024年间国际延时现场救护领域的文献,探究主要研究主题及其发展趋势,以期为未来救护策略提供理论支持。方法系统检索PubMed、Embase、Web of Science和中国知网等数据库,筛选并纳入283篇相关文献。运用BERTopic主题建模... 目的分析2009~2024年间国际延时现场救护领域的文献,探究主要研究主题及其发展趋势,以期为未来救护策略提供理论支持。方法系统检索PubMed、Embase、Web of Science和中国知网等数据库,筛选并纳入283篇相关文献。运用BERTopic主题建模技术对文献进行主题识别和关键词分析,并进行可视化展示。结果当前研究主要聚焦在“急救策略研究”“智能技术与信息管理”“实战应用”与“政策与理论研究”等4个方面,预测这些领域将持续成为研究热点。结论国际延时现场救护研究正处于快速发展阶段,建议未来研究深入重点领域,开发有效的救护策略,以提升救治效率和伤员生存率。 展开更多
关键词 延时现场救护 主题建模 研究热点
下载PDF
ESG Discourse Analysis Through BERTopic: Comparing News Articles and Academic Papers
13
作者 Haein Lee Seon Hong Lee +1 位作者 Kyeo Re Lee Jang Hyun Kim 《Computers, Materials & Continua》 SCIE EI 2023年第6期6023-6037,共15页
Environmental,social,and governance(ESG)factors are critical in achieving sustainability in business management and are used as values aiming to enhance corporate value.Recently,non-financial indicators have been cons... Environmental,social,and governance(ESG)factors are critical in achieving sustainability in business management and are used as values aiming to enhance corporate value.Recently,non-financial indicators have been considered as important for the actual valuation of corporations,thus analyzing natural language data related to ESG is essential.Several previous studies limited their focus to specific countries or have not used big data.Past methodologies are insufficient for obtaining potential insights into the best practices to leverage ESG.To address this problem,in this study,the authors used data from two platforms:LexisNexis,a platform that provides media monitoring,and Web of Science,a platform that provides scientific papers.These big data were analyzed by topic modeling.Topic modeling can derive hidden semantic structures within the text.Through this process,it is possible to collect information on public and academic sentiment.The authors explored data from a text-mining perspective using bidirectional encoder representations from transformers topic(BERTopic)—a state-of-the-art topic-modeling technique.In addition,changes in subject patterns over time were considered using dynamic topic modeling.As a result,concepts proposed in an international organization such as the United Nations(UN)have been discussed in academia,and the media have formed a variety of agendas. 展开更多
关键词 ESG BERtopic natural language processing topic modeling
下载PDF
基于BERTopic模型的用户层次化需求及动机分析--以抖音平台为例 被引量:8
14
作者 刘洋 柳卓心 +1 位作者 金昊 陈飞扬 《情报杂志》 北大核心 2023年第12期159-167,共9页
[研究目的]在分析短视频平台的用户生成内容构成,提炼其在时间演化与社会事件影响下表现出的构造与演化规律,挖掘短视频用户的内在行为需要,探讨其用户参与行为的潜在动机因素。[研究方法]以抖音平台237万条短视频发布数据作为研究样本... [研究目的]在分析短视频平台的用户生成内容构成,提炼其在时间演化与社会事件影响下表现出的构造与演化规律,挖掘短视频用户的内在行为需要,探讨其用户参与行为的潜在动机因素。[研究方法]以抖音平台237万条短视频发布数据作为研究样本,使用BERTopic模型实现主题聚类,总结用户一定时间内的话题的关注情况,并在互联网视角下结合马斯洛需求层次理论,揭示用户参与行为背后需求与动机。[研究结论]首先,用户的需求关注度由高至低的排列顺序为尊重需求、安全需求、社交需求、自我实现需求与生理需求,且该关注顺序能在日常的时间推移中保持稳定;其次,用户对于社会事件有着较高的讨论度,相关事件能够显著影响时段内用户的视频内容构成,但对用户的关注程度分布影响微弱;最后,用户在发布视频过程中和点赞互动的关注热点存在差异。用户在发布视频时更关注尊重层次需求,而在浏览互动时,自我实现层次需求受到的关注程度显著提升。 展开更多
关键词 短视频 用户需求 用户行为 主题聚类 主题演化 BERtopic模型 马斯洛需求理论
下载PDF
Smart object recommendation based on topic learning and joint features in the social internet of things 被引量:1
15
作者 Hongfei Zhang Li Zhu +4 位作者 Tao Dai Liwen Zhang Xi Feng Li Zhang Kaiqi Zhang 《Digital Communications and Networks》 SCIE CSCD 2023年第1期22-32,共11页
With the extensive integration of the Internet,social networks and the internet of things,the social internet of things has increasingly become a significant research issue.In the social internet of things application... With the extensive integration of the Internet,social networks and the internet of things,the social internet of things has increasingly become a significant research issue.In the social internet of things application scenario,one of the greatest challenges is how to accurately recommend or match smart objects for users with massive resources.Although a variety of recommendation algorithms have been employed in this field,they ignore the massive text resources in the social internet of things,which can effectively improve the effect of recommendation.In this paper,a smart object recommendation approach named object recommendation based on topic learning and joint features is proposed.The proposed approach extracts and calculates topics and service relevant features of texts related to smart objects and introduces the“thing-thing”relationship information in the internet of things to improve the effect of recommendation.Experiments show that the proposed approach enables higher accuracy compared to the existing recommendation methods. 展开更多
关键词 Social internet of things Smart object recommendation topics Features Thing-thing relationship
下载PDF
TG-SMR:AText Summarization Algorithm Based on Topic and Graph Models 被引量:1
16
作者 Mohamed Ali Rakrouki Nawaf Alharbe +1 位作者 Mashael Khayyat Abeer Aljohani 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期395-408,共14页
Recently,automation is considered vital in most fields since computing methods have a significant role in facilitating work such as automatic text summarization.However,most of the computing methods that are used in r... Recently,automation is considered vital in most fields since computing methods have a significant role in facilitating work such as automatic text summarization.However,most of the computing methods that are used in real systems are based on graph models,which are characterized by their simplicity and stability.Thus,this paper proposes an improved extractive text summarization algorithm based on both topic and graph models.The methodology of this work consists of two stages.First,the well-known TextRank algorithm is analyzed and its shortcomings are investigated.Then,an improved method is proposed with a new computational model of sentence weights.The experimental results were carried out on standard DUC2004 and DUC2006 datasets and compared to four text summarization methods.Finally,through experiments on the DUC2004 and DUC2006 datasets,our proposed improved graph model algorithm TG-SMR(Topic Graph-Summarizer)is compared to other text summarization systems.The experimental results prove that the proposed TG-SMR algorithm achieves higher ROUGE scores.It is foreseen that the TG-SMR algorithm will open a new horizon that concerns the performance of ROUGE evaluation indicators. 展开更多
关键词 Natural language processing text summarization graph model topic model
下载PDF
Water-responsive gel extends drug retention and facilitates skin penetration for curcumin topical delivery against psoriasis
17
作者 Qing Yao Yuanyuan Zhai +11 位作者 Zhimin He Qian Wang Lining Sun Tuyue Sun Leyao Lv Yingtao Li Jiyong Yang Donghui Lv Ruijie Chen Hailin Zhang Xiang Luo Longfa Kou 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期61-75,共15页
Psoriasis is a chronic inflammatory skin disease characterized by erythema,scaling,and skin thickening.Topical drug application is recommended as the first-line treatment.Many formulation strategies have been develope... Psoriasis is a chronic inflammatory skin disease characterized by erythema,scaling,and skin thickening.Topical drug application is recommended as the first-line treatment.Many formulation strategies have been developed and explored for enhanced topical psoriasis treatment.However,these preparations usually have low viscosity and limited retention on the skin surface,resulting in low drug delivery efficiency and poor patient satisfaction.In this study,we developed the first water-responsive gel(WRG),which has a distinct water-triggered liquid-to-gel phase transition property.Specifically,WRG was kept in a solution state in the absence of water,and the addition of water induced an immediate phase transition and resulted in a high viscosity gel.Curcumin was used as a model drug to investigate the potential of WRG in topical drug delivery against psoriasis.In vitro and in vivo data showed that WRG formulation could not only extend skin retention but also facilitate the drug permeating across the skin.In a mouse model of psoriasis,curcumin loaded WRG(CUR-WRG)effectively ameliorated the symptoms of psoriasis and exerted a potent anti-psoriasis effect by extending drug retention and facilitating drug penetration.Further mechanism study demonstrated that the anti-hyperplasia,anti-inflammation,anti-angiogenesis,anti-oxidation,and immunomodulation properties of curcumin were amplified by enhanced topical drug delivery efficiency.Notably,neglectable local or systemic toxicity was observed for CUR-WRG application.This study suggests that WRG is a promising formulation for topically psoriasis treatment. 展开更多
关键词 PSORIASIS Sol-gel transition Water-responsive CURCUMIN topical drug delivery
下载PDF
Topic Controlled Steganography via Graph-to-Text Generation
18
作者 Bowen Sun Yamin Li +3 位作者 Jun Zhang Honghong Xu Xiaoqiang Ma Ping Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期157-176,共20页
Generation-based linguistic steganography is a popular research area of information hiding.The text generative steganographic method based on conditional probability coding is the direction that researchers have recen... Generation-based linguistic steganography is a popular research area of information hiding.The text generative steganographic method based on conditional probability coding is the direction that researchers have recently paid attention to.However,in the course of our experiment,we found that the secret information hiding in the text tends to destroy the statistical distribution characteristics of the original text,which indicates that this method has the problem of the obvious reduction of text quality when the embedding rate increases,and that the topic of generated texts is uncontrollable,so there is still room for improvement in concealment.In this paper,we propose a topic-controlled steganography method which is guided by graph-to-text generation.The proposed model can automatically generate steganographic texts carrying secret messages from knowledge graphs,and the topic of the generated texts is controllable.We also provide a graph path coding method with corresponding detailed algorithms for graph-to-text generation.Different from traditional linguistic steganography methods,we encode the secret information during graph path coding rather than using conditional probability.We test our method in different aspects and compare it with other text generative steganographic methods.The experimental results show that the model proposed in this paper can effectively improve the quality of the generated text and significantly improve the concealment of steganographic text. 展开更多
关键词 Information hiding linguistic steganography knowledge graph topic controlled text generation
下载PDF
Research on high-performance English translation based on topic model
19
作者 Yumin Shen Hongyu Guo 《Digital Communications and Networks》 SCIE CSCD 2023年第2期505-511,共7页
Retelling extraction is an important branch of Natural Language Processing(NLP),and high-quality retelling resources are very helpful to improve the performance of machine translation.However,traditional methods based... Retelling extraction is an important branch of Natural Language Processing(NLP),and high-quality retelling resources are very helpful to improve the performance of machine translation.However,traditional methods based on the bilingual parallel corpus often ignore the document background in the process of retelling acquisition and application.In order to solve this problem,we introduce topic model information into the translation mode and propose a topic-based statistical machine translation method to improve the translation performance.In this method,Probabilistic Latent Semantic Analysis(PLSA)is used to obtains the co-occurrence relationship between words and documents by the hybrid matrix decomposition.Then we design a decoder to simplify the decoding process.Experiments show that the proposed method can effectively improve the accuracy of translation. 展开更多
关键词 Machine translation topic model Statistical machine translation Bilingual word vector RETELLING
下载PDF
Topic Modelling and Sentimental Analysis of Students’Reviews
20
作者 Omer S.Alkhnbashi Rasheed Mohammad Nassr 《Computers, Materials & Continua》 SCIE EI 2023年第3期6835-6848,共14页
Globally,educational institutions have reported a dramatic shift to online learning in an effort to contain the COVID-19 pandemic.The fundamental concern has been the continuance of education.As a result,several novel... Globally,educational institutions have reported a dramatic shift to online learning in an effort to contain the COVID-19 pandemic.The fundamental concern has been the continuance of education.As a result,several novel solutions have been developed to address technical and pedagogical issues.However,these were not the only difficulties that students faced.The implemented solutions involved the operation of the educational process with less regard for students’changing circumstances,which obliged them to study from home.Students should be asked to provide a full list of their concerns.As a result,student reflections,including those from Saudi Arabia,have been analysed to identify obstacles encountered during the COVID-19 pandemic.However,most of the analyses relied on closed-ended questions,which limited student involvement.To delve into students’responses,this study used open-ended questions,a qualitative method(content analysis),a quantitative method(topic modelling),and a sentimental analysis.This study also looked at students’emotional states during and after the COVID-19 pandemic.In terms of determining trends in students’input,the results showed that quantitative and qualitative methods produced similar outcomes.Students had unfavourable sentiments about studying during COVID-19 and positive sentiments about the face-to-face study.Furthermore,topic modelling has revealed that the majority of difficulties are more related to the environment(home)and social life.Students were less accepting of online learning.As a result,it is possible to conclude that face-to-face study still attracts students and provides benefits that online study cannot,such as social interaction and effective eye-to-eye communication. 展开更多
关键词 topic modelling sentimental analysis COVID-19 students’input
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部