In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-Ⅱ^- time projection chamber(TPC). T...In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-Ⅱ^- time projection chamber(TPC). This monitor was designed to improve spatial resolution for detecting radon alpha particles using Topmetal-Ⅱ^- sensors assembled by a 0.35 lm CMOS integrated circuit process.Owing to concerns that small pixel size might have the side effect of worsening energy resolution due to lower signalto-noise ratio, a Geant4-based simulation was used to investigate the dependence of energy resolution on pixel sizes ranging from 60 to 600 lm. A non-monotonic trend in this region shows the combined effect of pixel size and threshold on pixels, analyzed by introducing an empirical expression. Pixel noise contributes 50 keV full-width at half-maximum energy resolution for 400 lm pixel size at 1–4σ threshold that is comparable to the energy resolution caused by energy fluctuations in the TPC ionization process( ~20 keV). The total energy resolution after combining both factors is estimated to be 54 keV for a pixel size of 400 lm at 1–4σ threshold. The analysis presented in this paper would help choosing suitable pixel size for future pixelated detectors.展开更多
A prototype beam monitor was designed to provide tracking information for heavy-ion projectiles for the cool storage ring(CSR)external target experiment(CEE)at the Heavy Ion Research Facility in Lanzhou(HIRFL).High gr...A prototype beam monitor was designed to provide tracking information for heavy-ion projectiles for the cool storage ring(CSR)external target experiment(CEE)at the Heavy Ion Research Facility in Lanzhou(HIRFL).High granularity and direct charge sensing are the main features of this device.It measures the beam position in a two-dimensional(2D)plane transverse to the beam direction on an event-by-event basis.The current design consists of two field cages inside a single vessel that operates independently and has electrical drift fields in orthogonal directions.Preliminary tests of the prototype were performed using a^(241)Am a source.The results show that a spatial resolution of less than 40μm and a time resolution of less than 600 ns can be achieved.展开更多
Topmetal-Ⅱ^-is a low noise CMOS pixel direct charge sensor with a pitch of 83 μm.CdZnTe is an excellent semiconductor material for radiation detection.The combination of CdZnTe and the sensor makes it possible to bu...Topmetal-Ⅱ^-is a low noise CMOS pixel direct charge sensor with a pitch of 83 μm.CdZnTe is an excellent semiconductor material for radiation detection.The combination of CdZnTe and the sensor makes it possible to build a detector with high spatial resolution.In our experiments,an epoxy adhesive is used as the conductive medium to connect the sensor and cadmium zinc telluride(CdZnTe).The diffusion coefficient and charge efficiency of electrons are measured at a low bias voltage of-2 V,and the image of a single alpha particle is clear with a reasonable spatial resolution.A detector with such a structure has the potential to be applied in X-ray imaging systems with further improvements of the sensor.展开更多
基金supported by the National Natural Science Foundation of China(No.U1732271)
文摘In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-Ⅱ^- time projection chamber(TPC). This monitor was designed to improve spatial resolution for detecting radon alpha particles using Topmetal-Ⅱ^- sensors assembled by a 0.35 lm CMOS integrated circuit process.Owing to concerns that small pixel size might have the side effect of worsening energy resolution due to lower signalto-noise ratio, a Geant4-based simulation was used to investigate the dependence of energy resolution on pixel sizes ranging from 60 to 600 lm. A non-monotonic trend in this region shows the combined effect of pixel size and threshold on pixels, analyzed by introducing an empirical expression. Pixel noise contributes 50 keV full-width at half-maximum energy resolution for 400 lm pixel size at 1–4σ threshold that is comparable to the energy resolution caused by energy fluctuations in the TPC ionization process( ~20 keV). The total energy resolution after combining both factors is estimated to be 54 keV for a pixel size of 400 lm at 1–4σ threshold. The analysis presented in this paper would help choosing suitable pixel size for future pixelated detectors.
基金supported by the National Natural Science Foundation of China (Nos. 11927901, U2032209, 12005046)
文摘A prototype beam monitor was designed to provide tracking information for heavy-ion projectiles for the cool storage ring(CSR)external target experiment(CEE)at the Heavy Ion Research Facility in Lanzhou(HIRFL).High granularity and direct charge sensing are the main features of this device.It measures the beam position in a two-dimensional(2D)plane transverse to the beam direction on an event-by-event basis.The current design consists of two field cages inside a single vessel that operates independently and has electrical drift fields in orthogonal directions.Preliminary tests of the prototype were performed using a^(241)Am a source.The results show that a spatial resolution of less than 40μm and a time resolution of less than 600 ns can be achieved.
基金Supported by National Natural Science Foundation of China(11375073,11305072,U1232206)
文摘Topmetal-Ⅱ^-is a low noise CMOS pixel direct charge sensor with a pitch of 83 μm.CdZnTe is an excellent semiconductor material for radiation detection.The combination of CdZnTe and the sensor makes it possible to build a detector with high spatial resolution.In our experiments,an epoxy adhesive is used as the conductive medium to connect the sensor and cadmium zinc telluride(CdZnTe).The diffusion coefficient and charge efficiency of electrons are measured at a low bias voltage of-2 V,and the image of a single alpha particle is clear with a reasonable spatial resolution.A detector with such a structure has the potential to be applied in X-ray imaging systems with further improvements of the sensor.