The Philippine Sea is the largest marginal sea in the Western Pacific Ocean and is divided into two parts by the Kyushu-Palau Ridge(KPR).The western part is the West Philippine Basin,and the eastern part consists of t...The Philippine Sea is the largest marginal sea in the Western Pacific Ocean and is divided into two parts by the Kyushu-Palau Ridge(KPR).The western part is the West Philippine Basin,and the eastern part consists of the Shikoku and Parece Vela basins.Based on surveyed data of massive high-resolution multibeam bathymetric data and sub-bottom profiles data collected from the southern section of the KPR from 2018 to 2021,this paper analyzes the topographic and geomorphological features,shallow sedimentary features,and tectonic genesis of the southern section of the KPR,obtaining the following conclusions.The southern section of the KPR has complex and rugged topography,with positive and negative topography alternatingly distributed and a maximum height difference of 4086 m.The slope of seamounts in this section generally exceeds 10°and is up to a maximum of 59°.All these contribute noticeably discontinuous topography.There are primarily nine geomorphological types in the southern section of the KPR,including seamounts,ridges,and intermontane valleys,etc.Among them,seven independent seamount groups are divided by five large troughs,forming an overall geomorphological pattern of seven abyssal seamount groups and five troughs.This reflects the geomorphological features of a deep oceanic ridge.Intramontane basins and intermontane valleys in the southern section of the KPR are covered by evenly thick sediments.In contrast,sediments in ridges and seamounts in this section are thin or even missing,with slumps developing locally.Therefore,the sediments are discontinuous and unevenly developed.The KPR formed under the control of tectonism such as volcanic activities and plate movements.In addition,exogenic forces such as underflow scouring and sedimentation also play a certain role in shaping seafloor landforms in the KPR.展开更多
Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3...Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved.展开更多
High-resolution landslide images are required for detailed geomorphological analysis in complex topographic environment with steep and vertical landslide distribution.This study proposed a vertical route planning meth...High-resolution landslide images are required for detailed geomorphological analysis in complex topographic environment with steep and vertical landslide distribution.This study proposed a vertical route planning method for unmanned aerial vehicles(UAVs),which could achieve rapid image collection based on strictly calculated route parameters.The effectiveness of this method was verified using a DJI Mavic 2 Pro,obtaining high-resolution landslide images within the Dongchuan debris flow gully,in the Xiaojiang River Basin,Dongchuan District,Yunnan,China.A three-dimensional(3D)model was constructed by the structure-from-motion and multi-view stereo(SfM-MVS).Micro-geomorphic features were analyzed through visual interpretation,geographic information system(GIS),spatial analysis,and mathematical statistics methods.The results demonstrated that the proposed method could obtain comprehensive vertical information on landslides while improving measurement accuracy.The 3D model was constructed using the vertically oriented flight route to achieve centimeter-level accuracy(horizontal accuracy better than 6 cm,elevation accuracy better than 3 cm,and relative accuracy better than 3.5 cm).The UAV technology could further help understand the micro internal spatial and structural characteristics of landslides,facilitating intuitive acquisition of surface details.The slope of landslide clusters ranged from 36°to 72°,with the majority of the slope facing east and southeast.Upper elevation levels were relatively consistent while middle to lower elevation levels gradually decreased from left to right with significant variations in lower elevation levels.During the rainy season,surface runoff was abundant,and steep topography exacerbated changes in surface features.This route method is suitable for unmanned aerial vehicle(UAV)landslide surveys in complex mountainous environments.The geomorphological analysis methods used will provide references for identifying and describing topographic features.展开更多
Modeling and simulation allow methodical variation of material properties beyond the capacity of experimental methods. Due to the hexagonal structure of graphene, it is considered as frame-like structure. In the frame...Modeling and simulation allow methodical variation of material properties beyond the capacity of experimental methods. Due to the hexagonal structure of graphene, it is considered as frame-like structure. In the frame, covalent C-C bonds are taken as beams joined together with carbon atoms placed at the joints. Uniaxial beam elements, defined by their cross-sectional area, material properties, and moment of inertia represent the covalent bonds. The parameters of the beam elements are determined by establishing equivalence between structural and computational mechanics. However, the bonds connecting the carbon atoms do not have physical existence as they are a compromise between attractive and repulsive forces. Also, defects at nanoscale make graphene different from frame-like structure. In addition, the topography of graphene makes it non-linear structure and even the axial loading changes to eccentric loading. Here we show that, by using basic statics principles, disparities between graphene and frame-likes structures can be highlighted.展开更多
Monitoring forest disturbances is important for understanding changes in ecosystems. The 1986 Typhoon Vera was a serious disturbance that severely impacted the forest ecosystems of Changbai Mountain National Nature Re...Monitoring forest disturbances is important for understanding changes in ecosystems. The 1986 Typhoon Vera was a serious disturbance that severely impacted the forest ecosystems of Changbai Mountain National Nature Reserve. Although the typhoon disturbance occurred more than two decades ago, the effects of the typhoon still remain within the study area. Few studies have focused on mapping and assessing disturbances across broad spatial and temporal scales. For this study, we first generated a map of forest composition prior to the typhoon disturbance, which served as a baseline data for the extraction of disturbed area. Then, the Disturbance Index(DI) method was tested for mapping the extent and magnitude of disturbance in the study area by applying a Tasseled Cap transformation to the Landsat imagery. The Landsatbased DI method estimated that an area of 13,764.78 ha of forest was disturbed by the typhoon. Based on visual assessments, these results correspond closely with the reference map derived from ground surveys. These results also revealed the influence of local topographic features on the distribution of windthrow areas. Windthrow areas were more pronounced inareas with elevations ranging from 1,000 to 2,000 m, slopes of less than 10 degrees, and southwestern to northwestern aspects. In addition, the relatively long(25 years) post-typhoon recovery period assessed by this study provided a more comprehensive analysis of the dynamics of forest recovery processes over time. Windthrow areas did not recover immediately after the typhoon, likely due to forest management practices enacted at the time. So far, forest recovery has proceeded more rapidly at elevations below 1,400 m, particularly on western slopes within the study area. Finally, a time series of DI values within the study period suggests a secondary disturbance may have occurred between 2000 and 2001.展开更多
Based on new multibeam bathymetric data and about 300 km long single seismic profiles, three topographic units were identified: the canyons, fractural valley and submarine terrace on the north of Chiwei Island where ...Based on new multibeam bathymetric data and about 300 km long single seismic profiles, three topographic units were identified: the canyons, fractural valley and submarine terrace on the north of Chiwei Island where is a structural transition zone between the southern trough and the middle trough. The Chiwei Canyon and the North Chiwei Canyon are two of the largest canyons in the East China Sea (ECS) slope. Topographic features and architectures of them are described. The study shows that both of them are originated along faults. The evolution and spatial distribution of topographic units in the study area are controlled mainly by three groups of faults which were formed and reactive in the recent extensional phase of Okinawa Trough. The Chiwei Canyon was initia- ted during the middle Pleistocene and guided by F4 that is a N--S trending fault on the slope and F1, a large NW--SE trending fault on the trough. The pathway migration from the remnant channel to the present one of Chiwei Canyon is the result of uplift of tilted fault block that is coupled to the recent extension movements of the southern trough. The submarine terrace is detached from the ECS slope by the NEE -trending fault. The North Chiwei Canyon, developing during the late Pleistocene, is guided by FS, a N-S trending fault, diverted and blocked by the submarine terrace.展开更多
According to the topography of mountains, the discrete data points from map of the whole region are first subdivided into subregions with the points taken from the feature lines of ridge, valley and scarp being insert...According to the topography of mountains, the discrete data points from map of the whole region are first subdivided into subregions with the points taken from the feature lines of ridge, valley and scarp being inserted into the map point set, and using the feature lines as the boundaries of subregions to build constrained Delaunay TIN. Such an approach has the advantages of ensuring high accuracy and fast speed of line layout.展开更多
This report first gives a general description of Cambodia and then discusses its topographic and geological features. Finally, the current situation concerning erosion and sediment disasters is discussed.
Previous studies have shown that high-frequency(HF)waves,low-frequency(LF)waves and wave set-up coexist on shallow coral reef-flat and jointly contribute to potential floods and subsequent damages of infrastructures a...Previous studies have shown that high-frequency(HF)waves,low-frequency(LF)waves and wave set-up coexist on shallow coral reef-flat and jointly contribute to potential floods and subsequent damages of infrastructures and islands on it.To better understand the reef-flat wave dynamics with incident waves and still water level,a wave-flume experiment was performed based on an idealized platform reef composed of a steep reef-face(1:4),a relatively mild reef-rim(1:14)and a horizontal reef-flat.Also,the non-hydrostatic phase-resolving model SWASH was validated against the experiment and then applied to further numerically investigate the effects of reef-rim topographic features on the reef-flat wave motions.The results show that incident waves of a larger wave height and a longer wave period can generate larger LF waves and wave set-up,thereby inducing greater HF waves on the reef-flat.Higher still water level can lead to larger HF waves but result in smaller wave set-up.In contrast to HF waves and wave set-up,LF waves are minimally affected by the still water level.A rim of milder slope and larger edge depth will induce smaller HF and LF waves and set-up on the reef-flat,and thus provide better protection for the reef-flat region.Furthermore,on the reef-flat,the ratio of HF significant wave height to water depth H_(s_h)/(h_(r)+η^(-))is approximately constant;the dimensionless LF significant wave height Hs_l/H_(s0) and the dimensionless wave set-upη^(-)/[T_(p)(gH_(s0))1/2]can be related to the inverse wave steepness parameter gT_(p)^(2)/H_(s0) and the relative reef-flat submergence(h_(r)+η^(-))/H_(s0) respectively.展开更多
基金This paper is funded by the National Special Program of China Geological Survey(DD20191002,DD20191003)。
文摘The Philippine Sea is the largest marginal sea in the Western Pacific Ocean and is divided into two parts by the Kyushu-Palau Ridge(KPR).The western part is the West Philippine Basin,and the eastern part consists of the Shikoku and Parece Vela basins.Based on surveyed data of massive high-resolution multibeam bathymetric data and sub-bottom profiles data collected from the southern section of the KPR from 2018 to 2021,this paper analyzes the topographic and geomorphological features,shallow sedimentary features,and tectonic genesis of the southern section of the KPR,obtaining the following conclusions.The southern section of the KPR has complex and rugged topography,with positive and negative topography alternatingly distributed and a maximum height difference of 4086 m.The slope of seamounts in this section generally exceeds 10°and is up to a maximum of 59°.All these contribute noticeably discontinuous topography.There are primarily nine geomorphological types in the southern section of the KPR,including seamounts,ridges,and intermontane valleys,etc.Among them,seven independent seamount groups are divided by five large troughs,forming an overall geomorphological pattern of seven abyssal seamount groups and five troughs.This reflects the geomorphological features of a deep oceanic ridge.Intramontane basins and intermontane valleys in the southern section of the KPR are covered by evenly thick sediments.In contrast,sediments in ridges and seamounts in this section are thin or even missing,with slumps developing locally.Therefore,the sediments are discontinuous and unevenly developed.The KPR formed under the control of tectonism such as volcanic activities and plate movements.In addition,exogenic forces such as underflow scouring and sedimentation also play a certain role in shaping seafloor landforms in the KPR.
基金National Natural Science Foundation of China(Nos.41861054,41371423,61966010)National Key R&D Program of China(No.2016YFB0502105)。
文摘Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved.
基金supported by the National Natural Science Foundation of China (Grant No. 62266026)
文摘High-resolution landslide images are required for detailed geomorphological analysis in complex topographic environment with steep and vertical landslide distribution.This study proposed a vertical route planning method for unmanned aerial vehicles(UAVs),which could achieve rapid image collection based on strictly calculated route parameters.The effectiveness of this method was verified using a DJI Mavic 2 Pro,obtaining high-resolution landslide images within the Dongchuan debris flow gully,in the Xiaojiang River Basin,Dongchuan District,Yunnan,China.A three-dimensional(3D)model was constructed by the structure-from-motion and multi-view stereo(SfM-MVS).Micro-geomorphic features were analyzed through visual interpretation,geographic information system(GIS),spatial analysis,and mathematical statistics methods.The results demonstrated that the proposed method could obtain comprehensive vertical information on landslides while improving measurement accuracy.The 3D model was constructed using the vertically oriented flight route to achieve centimeter-level accuracy(horizontal accuracy better than 6 cm,elevation accuracy better than 3 cm,and relative accuracy better than 3.5 cm).The UAV technology could further help understand the micro internal spatial and structural characteristics of landslides,facilitating intuitive acquisition of surface details.The slope of landslide clusters ranged from 36°to 72°,with the majority of the slope facing east and southeast.Upper elevation levels were relatively consistent while middle to lower elevation levels gradually decreased from left to right with significant variations in lower elevation levels.During the rainy season,surface runoff was abundant,and steep topography exacerbated changes in surface features.This route method is suitable for unmanned aerial vehicle(UAV)landslide surveys in complex mountainous environments.The geomorphological analysis methods used will provide references for identifying and describing topographic features.
文摘Modeling and simulation allow methodical variation of material properties beyond the capacity of experimental methods. Due to the hexagonal structure of graphene, it is considered as frame-like structure. In the frame, covalent C-C bonds are taken as beams joined together with carbon atoms placed at the joints. Uniaxial beam elements, defined by their cross-sectional area, material properties, and moment of inertia represent the covalent bonds. The parameters of the beam elements are determined by establishing equivalence between structural and computational mechanics. However, the bonds connecting the carbon atoms do not have physical existence as they are a compromise between attractive and repulsive forces. Also, defects at nanoscale make graphene different from frame-like structure. In addition, the topography of graphene makes it non-linear structure and even the axial loading changes to eccentric loading. Here we show that, by using basic statics principles, disparities between graphene and frame-likes structures can be highlighted.
基金sponsored by the "State Key Laboratory of Resources and Environmental Information System" and the "Fundamental Research Funds for the Central Universities" (No. 11SSXT134)
文摘Monitoring forest disturbances is important for understanding changes in ecosystems. The 1986 Typhoon Vera was a serious disturbance that severely impacted the forest ecosystems of Changbai Mountain National Nature Reserve. Although the typhoon disturbance occurred more than two decades ago, the effects of the typhoon still remain within the study area. Few studies have focused on mapping and assessing disturbances across broad spatial and temporal scales. For this study, we first generated a map of forest composition prior to the typhoon disturbance, which served as a baseline data for the extraction of disturbed area. Then, the Disturbance Index(DI) method was tested for mapping the extent and magnitude of disturbance in the study area by applying a Tasseled Cap transformation to the Landsat imagery. The Landsatbased DI method estimated that an area of 13,764.78 ha of forest was disturbed by the typhoon. Based on visual assessments, these results correspond closely with the reference map derived from ground surveys. These results also revealed the influence of local topographic features on the distribution of windthrow areas. Windthrow areas were more pronounced inareas with elevations ranging from 1,000 to 2,000 m, slopes of less than 10 degrees, and southwestern to northwestern aspects. In addition, the relatively long(25 years) post-typhoon recovery period assessed by this study provided a more comprehensive analysis of the dynamics of forest recovery processes over time. Windthrow areas did not recover immediately after the typhoon, likely due to forest management practices enacted at the time. So far, forest recovery has proceeded more rapidly at elevations below 1,400 m, particularly on western slopes within the study area. Finally, a time series of DI values within the study period suggests a secondary disturbance may have occurred between 2000 and 2001.
基金The National Natural Science Foundation of China under contract Nos 40576033 and 40406013
文摘Based on new multibeam bathymetric data and about 300 km long single seismic profiles, three topographic units were identified: the canyons, fractural valley and submarine terrace on the north of Chiwei Island where is a structural transition zone between the southern trough and the middle trough. The Chiwei Canyon and the North Chiwei Canyon are two of the largest canyons in the East China Sea (ECS) slope. Topographic features and architectures of them are described. The study shows that both of them are originated along faults. The evolution and spatial distribution of topographic units in the study area are controlled mainly by three groups of faults which were formed and reactive in the recent extensional phase of Okinawa Trough. The Chiwei Canyon was initia- ted during the middle Pleistocene and guided by F4 that is a N--S trending fault on the slope and F1, a large NW--SE trending fault on the trough. The pathway migration from the remnant channel to the present one of Chiwei Canyon is the result of uplift of tilted fault block that is coupled to the recent extension movements of the southern trough. The submarine terrace is detached from the ECS slope by the NEE -trending fault. The North Chiwei Canyon, developing during the late Pleistocene, is guided by FS, a N-S trending fault, diverted and blocked by the submarine terrace.
基金Supported by National Natural Science Foundation China (50779005)
文摘According to the topography of mountains, the discrete data points from map of the whole region are first subdivided into subregions with the points taken from the feature lines of ridge, valley and scarp being inserted into the map point set, and using the feature lines as the boundaries of subregions to build constrained Delaunay TIN. Such an approach has the advantages of ensuring high accuracy and fast speed of line layout.
文摘This report first gives a general description of Cambodia and then discusses its topographic and geological features. Finally, the current situation concerning erosion and sediment disasters is discussed.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2018B13314)the Science and Technology Project on Transportation Construction(Grant No.2015328521280).
文摘Previous studies have shown that high-frequency(HF)waves,low-frequency(LF)waves and wave set-up coexist on shallow coral reef-flat and jointly contribute to potential floods and subsequent damages of infrastructures and islands on it.To better understand the reef-flat wave dynamics with incident waves and still water level,a wave-flume experiment was performed based on an idealized platform reef composed of a steep reef-face(1:4),a relatively mild reef-rim(1:14)and a horizontal reef-flat.Also,the non-hydrostatic phase-resolving model SWASH was validated against the experiment and then applied to further numerically investigate the effects of reef-rim topographic features on the reef-flat wave motions.The results show that incident waves of a larger wave height and a longer wave period can generate larger LF waves and wave set-up,thereby inducing greater HF waves on the reef-flat.Higher still water level can lead to larger HF waves but result in smaller wave set-up.In contrast to HF waves and wave set-up,LF waves are minimally affected by the still water level.A rim of milder slope and larger edge depth will induce smaller HF and LF waves and set-up on the reef-flat,and thus provide better protection for the reef-flat region.Furthermore,on the reef-flat,the ratio of HF significant wave height to water depth H_(s_h)/(h_(r)+η^(-))is approximately constant;the dimensionless LF significant wave height Hs_l/H_(s0) and the dimensionless wave set-upη^(-)/[T_(p)(gH_(s0))1/2]can be related to the inverse wave steepness parameter gT_(p)^(2)/H_(s0) and the relative reef-flat submergence(h_(r)+η^(-))/H_(s0) respectively.