Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of...Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.展开更多
This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed c...This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.展开更多
Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-...Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-Razumikhin functions respectively, consensus criterions in the form of linear matrix inequality (LMI) are obtained for the system with time-varying communication delays under static interconnection topology con- verging to the leader's states. Moreover, the delay-dependent consensus criterion in the form of LMI is also obtained for the system with time-invariant communication delay and switching topologies by constructing Lyapunov-Krasovskii functional. Numerical simulations present the correctness of the results.展开更多
This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received ...This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received by some of the ASVs,and its velocity is unavailable to all the ASVs.A distributed extended state observer taking into consideration switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs'dynamics.Accordingly,a novel kinematic controller is designed,which takes full advantage of known information and avoids the approximation of some virtual control vectors.Moreover,a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore,a distributed dynamic controller is designed to regulate the involved ASVs to cooperatively track the target.It enables each ASV to adjust its forces and moments according to the received information from its neighbors.The effectiveness of the derived results is demonstrated through cooperative target tracking performance analysis for a tracking system composed of five interacting ASVs.展开更多
This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topolog...This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topologies as a continuous-time Markov process and taking the distributed delays into consideration,a novel distributed containment observer is proposed to estimate the convex hull spanned by the leaders'states.A novel distributed output feedback containment controller is then designed without using the prior knowledge of distributed delays.By constructing a novel switching Lyapunov functional,the output containment control problem is then solved in the sense of mean square under an easily-verifiable sufficient condition.Finally,two numerical examples are given to show the effectiveness of the proposed controller.展开更多
A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communicat...A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.展开更多
This paper investigates limited-budget consensus design and analysis problems of general high-order multiagent systems with intermittent communications and switching topologies.The main contribution of this paper is t...This paper investigates limited-budget consensus design and analysis problems of general high-order multiagent systems with intermittent communications and switching topologies.The main contribution of this paper is that the tradeoff design between the energy consumption and the consensus performance can be realized while achieving leaderless or leaderfollowing consensus,under constraints of limited budgets and intermittent communications.Firstly,a new intermittent limitedbudget consensus control protocol with a practical trade-off design index is proposed,where the total budget of the whole multiagent system is limited.Then,leaderless limited-budget consensus design and analysis criteria are derived,in which the matrix variables of linear matrix inequalities are determined according to the total budget and the practical trade-off design parameters.Meanwhile,an explicit formulation of the consensus function is derived to describe the consensus state trajectory of the whole system.Moreover,a new two-stage transformation strategy is utilized for leader-following cases,by which the dynamics decomposition of leaderless and leader-following cases can be converted into a unified framework,and sufficient conditions of the leader-following limited-budget consensus design and analysis are determined via those of the leaderless cases.Finally,numerical simulations are given to illustrate theoretical results.展开更多
The consensus problems of multi-agents with time-varying delays and switching topologies are studied. First, assume that an agent receives state information from its neighbors with fixed communication delays and proce...The consensus problems of multi-agents with time-varying delays and switching topologies are studied. First, assume that an agent receives state information from its neighbors with fixed communication delays and processes its own state information with time-varying self-delay respectively. The state time-delay feedback is introduced into the existing consensus protocol to begenerate an improved protocol. Then a sufficient condition is derived which can make the system with time-varying self-delays achieve the consensus. On this basis, a specific form of consensus equilibrium influenced by the initial states of agents, time-delays and state feedback intensity is figured out. In addition, the multi-agent consensus is considered with time-varying topologies. Finally, simulations are presented to il ustrate the validity of theoretical results.展开更多
The distributed leadless consensus problem for multiple quadrotor systems under fixed and switching topologies is investigated. The objective is to design protocols achieving consensus for networked quadrotors' posit...The distributed leadless consensus problem for multiple quadrotor systems under fixed and switching topologies is investigated. The objective is to design protocols achieving consensus for networked quadrotors' positions and attitudes. Because the model of a quadrotor is a strong high-order nonlinear coupling system, the approach of feedback linearization is employed to transform the model into a group of four linear subsystems among which there is no coupling. Then, a consensus algorithm is proposed which consists of a local feedback controller and interactions from the finite neighbors under fixed undirected topologies. Especially, the problem of choosing the parameters in the consensus algo-rithm is also addressed, enlightened by the results of the robust control theory. Furthermore, it is proved that the proposed algo-rithm also guarantees the consensus under undirected switching topologies. Simulation results show the effectiveness of the pro- posed algorithm.展开更多
This paper addresses the distributed optimization problem of discrete-time multiagent systems with nonconvex control input constraints and switching topologies.We introduce a novel distributed optimization algorithm w...This paper addresses the distributed optimization problem of discrete-time multiagent systems with nonconvex control input constraints and switching topologies.We introduce a novel distributed optimization algorithm with a switching mechanism to guarantee that all agents eventually converge to an optimal solution point,while their control inputs are constrained in their own nonconvex region.It is worth noting that the mechanism is performed to tackle the coexistence of the nonconvex constraint operator and the optimization gradient term.Based on the dynamic transformation technique,the original nonlinear dynamic system is transformed into an equivalent one with a nonlinear error term.By utilizing the nonnegative matrix theory,it is shown that the optimization problem can be solved when the union of switching communication graphs is jointly strongly connected.Finally,a numerical simulation example is used to demonstrate the acquired theoretical results.展开更多
This paper investigates the time-varying formation problem for general linear multi-agent systems using distributed event-triggered control strategy.Different from the previous works,to achieve the desired time-varyin...This paper investigates the time-varying formation problem for general linear multi-agent systems using distributed event-triggered control strategy.Different from the previous works,to achieve the desired time-varying formation,a distributed control scheme is designed in an event-triggered way,in which for each agent the controller is triggered only at its own event times.The interaction topology among agents is assumed to be switching.The common Lyapunov function as well as Riccati inequality is applied to solve the time-varying formation problem.Moreover,the Zeno behavior of triggering time sequences can be excluded for each agent.Finally,a simulation example is presented to illustrate the effectiveness of the theoretical results.展开更多
Theoretical analysis of consensus for networked multi-agent systems with switching topologies was conducted.Supposing that information-exchange topologies of networked system are dynamic,a modified linear protocol is ...Theoretical analysis of consensus for networked multi-agent systems with switching topologies was conducted.Supposing that information-exchange topologies of networked system are dynamic,a modified linear protocol is proffered which is more practical than existing ones.The definition of trajectory consensus is given and a new consensus protocol is exhibited such that multi-agent system achieves trajectory consensus.In addition,a formation control strategy is designed.A common Lyapunov function is proposed to analyze the consensus convergence of networked multi-agent systems with switching topologies.Simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
The time-varying network topology can significantly affect the stability of multi-agent systems.This paper examines the stability of leader-follower multi-agent systems with general linear dynamics and switching netwo...The time-varying network topology can significantly affect the stability of multi-agent systems.This paper examines the stability of leader-follower multi-agent systems with general linear dynamics and switching network topologies,which have applications in the platooning of connected vehicles.The switching interaction topology is modeled as a class of directed graphs in order to describe the information exchange between multi-agent systems,where the eigenvalues of every associated matrix are required to be positive real.The Hurwitz criterion and the Riccati inequality are used to design a distributed control law and estimate the convergence speed of the closed-loop system.A sufficient condition is provided for the stability of multi-agent systems under switching topologies.A common Lyapunov function is formulated to prove closed-loop stability for the directed network with switching topologies.The result is applied to a typical cyber-physical system—that is,a connected vehicle platoon—which illustrates the effectiveness of the proposed method.展开更多
A consensus algorithm proposed in the paper is applied to tackle remarkable problems of unmeasurable velocities,the environmental disturbances, and the limited communication environment for the multiple unmanned under...A consensus algorithm proposed in the paper is applied to tackle remarkable problems of unmeasurable velocities,the environmental disturbances, and the limited communication environment for the multiple unmanned underwater vehicles(multi-UUVs). Firstly, for a complex nonlinear and coupled model of the unmanned underwater vehicle(UUV), a technique of feedback linearization is developed to transform the nonlinear UUV model into a secondorder integral UUV model. Secondly, to address the problem of the unavailable velocity information and environmental disturbances for the multi-UUVs system, we design a distributed extended state observer(DESO) to estimate the unmeasurable velocities and environmental disturbances using the relative position information. Finally,we propose a protocol based on the estimation information from the DESO and demonstrate that the multi-UUVs system with the switching directed topologies under the protocol can reach consensus asymptotically. The theoretical result proposed in the literature is verified by one numerical example.展开更多
A mobile robot network is said to be easily scalable to any number of robots if its performance is kept almost fixed after these robots are added or some fail in the network. An interaction dynamics model based on mot...A mobile robot network is said to be easily scalable to any number of robots if its performance is kept almost fixed after these robots are added or some fail in the network. An interaction dynamics model based on motion synchronization is first established. Considering the mobility of mobile robot networks, we propose a relay switched, distributed topology control for the scalable network to drive neMy added robots to the most suitable positions with more neighbors as well as self-heal the blank positions of failed robots, and give a metric of the topology structure for evaluating the performance of network topologies. Then, we prove the stability of motion synchronization with the individual control based on Lyapunov exponent. Finally, the results of simulations have demonstrated the validity of the proposed modeling and control methods.展开更多
Achieving asymptotical cooperative goal for multi-agent systems(MASs)with non-autonomous leaders(i.e.,leaders with nonzero inputs)is a critical but challenging issue.Traditional approach is to use discontinuous contro...Achieving asymptotical cooperative goal for multi-agent systems(MASs)with non-autonomous leaders(i.e.,leaders with nonzero inputs)is a critical but challenging issue.Traditional approach is to use discontinuous controllers which may cause chattering phenomenon in practical applications.How to achieve the asymptotical goal via a chattering free cooperative controller remains to be open so far.In this paper,an adaptive continuous controller is designed to achieve zero error consensus tracking in multiple Lur’e systems with a non-autonomous leader under directed switching topology.Firstly,an unknown input observer(UIO)based on relative outputs is given to estimate the relative full states.Then an adaptive continuous controller is designed by introducing a decay function which remains positive into the term that plays the role of eliminating the impacts of leader’s nonzero inputs.Secondly,by using multiple Lyapunov functions(MLFs)technique,it is proven that zero error consensus tracking can be achieved if the average dwell time(ADT)is greater than a positive threshold.Finally,theoretical result is verified by performing simulations on Chua’s circuits.Compared with existing work,the proposed controller can not only achieve asymptotical consensus,but also is chattering free.展开更多
This paper studies the formation control problem for the second-order heterogeneous nonlinear multi-agent systems(MASs)with switching topology and quantized control inputs.Compared with formation control under the fix...This paper studies the formation control problem for the second-order heterogeneous nonlinear multi-agent systems(MASs)with switching topology and quantized control inputs.Compared with formation control under the fixed topology,under the switching topology inherent nonlinear dynamics of the agent and the connectivity change of the communication topology are considered.Moreover,to avoid the chattering phenomenon caused by unknown input disturbances,the hysteretic quantizers are incorporated to quantize the input signals.By using the Lyapunov stability theory and leader-follower formation approach,the proposed formation control scheme ensures that all signals of the MASs are semi-globally uniformly ultimately bounded(SGUUB).Finally,the efficiency of the theoretical results is proved by a simulation example.展开更多
To address fixed-time consensus problems of a class of leader-follower second-order nonlinear multi-agent systems with uncertain external disturbances,the event-triggered fixed-time consensus protocol is proposed.Firs...To address fixed-time consensus problems of a class of leader-follower second-order nonlinear multi-agent systems with uncertain external disturbances,the event-triggered fixed-time consensus protocol is proposed.First,the virtual velocity is designed based on the backstepping control method to achieve the system consensus and the bound on convergence time only depending on the system parameters.Second,an event-triggered mechanism is presented to solve the problem of frequent communication between agents,and triggered condition based on state information is given for each follower.It is available to save communication resources,and the Zeno behaviors are excluded.Then,the delay and switching topologies of the system are also discussed.Next,the system stabilization is analyzed by Lyapunov stability theory.Finally,simulation results demonstrate the validity of the presented method.展开更多
This paper studies the time-varying formation-containment tracking control problems for unmanned aerial vehicle(UAV)swarm systems with switching topologies and a non-cooperative target,where the UAV swarm systems cons...This paper studies the time-varying formation-containment tracking control problems for unmanned aerial vehicle(UAV)swarm systems with switching topologies and a non-cooperative target,where the UAV swarm systems consist of one tracking-leader,several formation-leaders,and followers.The formation-leaders are required to accomplish a predefined time-varying formation and track the desired trajectory of the tracking-leader,and the states of the followers should converge to the convex hull spanned by those of the formation-leaders.First,a formation-containment tracking protocol is proposed with the neighboring relative information,and the feasibility condition for formation-containment tracking and the algebraic Riccati equation are given.Then,the stability of the control system with the designed control protocol is proved by constructing a reasonable Lyapunov function.Finally,the simulation examples are applied to verify the effectiveness of the theoretical results.The simulation results show that both the formation tracking error and the containment error are convergent,so the system can complete the formation containment tracking control well.In the actual battlefield,combat UAVs need to chase and attack hostile UAVs,but sometimes when multiple UAVs work together for military interception,formationcontainment tracking control will occur.展开更多
This paper considers a multi-agent tracking problem for a high-dimensional active leaderand variable interconnection topology. The state of the leader not only keeps changing but also maynot be measured. To estimate t...This paper considers a multi-agent tracking problem for a high-dimensional active leaderand variable interconnection topology. The state of the leader not only keeps changing but also maynot be measured. To estimate the state such a leader individually, a neighbor-based local controllertogether with a neighbor-based state-estimation rule is given for each autonomous agent. Then, theauthors prove that, with the help of a constructed common Lyapunov function (CLF), each agent cantrack the active leader with unmeasurable states. Finally, the authors explicitly construct a CLF foran active leader with unknown periodic input for illustration.展开更多
基金Projects(61075065,60774045) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.
基金supported by the National Natural Science Foundation of China(No.60674050,60736022,10972002,60774089,60704039)
文摘This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.
基金supported by the Fundamental Research Funds for the Central Universities(JUSRP11020)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20090093120006)
文摘Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-Razumikhin functions respectively, consensus criterions in the form of linear matrix inequality (LMI) are obtained for the system with time-varying communication delays under static interconnection topology con- verging to the leader's states. Moreover, the delay-dependent consensus criterion in the form of LMI is also obtained for the system with time-invariant communication delay and switching topologies by constructing Lyapunov-Krasovskii functional. Numerical simulations present the correctness of the results.
基金supported in part by the National Science Foundation of China(61873335,61833011)the Project of Scie nce and Technology Commission of Shanghai Municipality,China(20ZR1420200,21SQBS01600,19510750300,21190780300)。
文摘This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received by some of the ASVs,and its velocity is unavailable to all the ASVs.A distributed extended state observer taking into consideration switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs'dynamics.Accordingly,a novel kinematic controller is designed,which takes full advantage of known information and avoids the approximation of some virtual control vectors.Moreover,a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore,a distributed dynamic controller is designed to regulate the involved ASVs to cooperatively track the target.It enables each ASV to adjust its forces and moments according to the received information from its neighbors.The effectiveness of the derived results is demonstrated through cooperative target tracking performance analysis for a tracking system composed of five interacting ASVs.
文摘This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topologies as a continuous-time Markov process and taking the distributed delays into consideration,a novel distributed containment observer is proposed to estimate the convex hull spanned by the leaders'states.A novel distributed output feedback containment controller is then designed without using the prior knowledge of distributed delays.By constructing a novel switching Lyapunov functional,the output containment control problem is then solved in the sense of mean square under an easily-verifiable sufficient condition.Finally,two numerical examples are given to show the effectiveness of the proposed controller.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51679057,51309067,and 51609048)the Outstanding Youth Science Foundation of Heilongjiang Providence of China(Grant No.JC2016007)the Natural Science Foundation of Heilongjiang Province,China(Grant No.E2016020)
文摘A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.
基金supported by the National Natural Science Foundation of China(62003363,61703411)China Postdoctoral Science Foundation(271004)+1 种基金Science Foundation for Distinguished Youth of Shaanxi Province(2021JC-35)Youth Science Foundation of Shaanxi Province(2021JQ-375)。
文摘This paper investigates limited-budget consensus design and analysis problems of general high-order multiagent systems with intermittent communications and switching topologies.The main contribution of this paper is that the tradeoff design between the energy consumption and the consensus performance can be realized while achieving leaderless or leaderfollowing consensus,under constraints of limited budgets and intermittent communications.Firstly,a new intermittent limitedbudget consensus control protocol with a practical trade-off design index is proposed,where the total budget of the whole multiagent system is limited.Then,leaderless limited-budget consensus design and analysis criteria are derived,in which the matrix variables of linear matrix inequalities are determined according to the total budget and the practical trade-off design parameters.Meanwhile,an explicit formulation of the consensus function is derived to describe the consensus state trajectory of the whole system.Moreover,a new two-stage transformation strategy is utilized for leader-following cases,by which the dynamics decomposition of leaderless and leader-following cases can be converted into a unified framework,and sufficient conditions of the leader-following limited-budget consensus design and analysis are determined via those of the leaderless cases.Finally,numerical simulations are given to illustrate theoretical results.
基金supported by the National Natural Science Foundation of China(6087405361034006)
文摘The consensus problems of multi-agents with time-varying delays and switching topologies are studied. First, assume that an agent receives state information from its neighbors with fixed communication delays and processes its own state information with time-varying self-delay respectively. The state time-delay feedback is introduced into the existing consensus protocol to begenerate an improved protocol. Then a sufficient condition is derived which can make the system with time-varying self-delays achieve the consensus. On this basis, a specific form of consensus equilibrium influenced by the initial states of agents, time-delays and state feedback intensity is figured out. In addition, the multi-agent consensus is considered with time-varying topologies. Finally, simulations are presented to il ustrate the validity of theoretical results.
基金supported by the National Natural Science Foundation of China(61074031)
文摘The distributed leadless consensus problem for multiple quadrotor systems under fixed and switching topologies is investigated. The objective is to design protocols achieving consensus for networked quadrotors' positions and attitudes. Because the model of a quadrotor is a strong high-order nonlinear coupling system, the approach of feedback linearization is employed to transform the model into a group of four linear subsystems among which there is no coupling. Then, a consensus algorithm is proposed which consists of a local feedback controller and interactions from the finite neighbors under fixed undirected topologies. Especially, the problem of choosing the parameters in the consensus algo-rithm is also addressed, enlightened by the results of the robust control theory. Furthermore, it is proved that the proposed algo-rithm also guarantees the consensus under undirected switching topologies. Simulation results show the effectiveness of the pro- posed algorithm.
基金Project supported by the National Engineering Research Center of Rail Transportation Operation and Control System,Beijing Jiaotong University(Grant No.NERC2019K002)。
文摘This paper addresses the distributed optimization problem of discrete-time multiagent systems with nonconvex control input constraints and switching topologies.We introduce a novel distributed optimization algorithm with a switching mechanism to guarantee that all agents eventually converge to an optimal solution point,while their control inputs are constrained in their own nonconvex region.It is worth noting that the mechanism is performed to tackle the coexistence of the nonconvex constraint operator and the optimization gradient term.Based on the dynamic transformation technique,the original nonlinear dynamic system is transformed into an equivalent one with a nonlinear error term.By utilizing the nonnegative matrix theory,it is shown that the optimization problem can be solved when the union of switching communication graphs is jointly strongly connected.Finally,a numerical simulation example is used to demonstrate the acquired theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant No.11701138)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2017202009 and F2018202075)
文摘This paper investigates the time-varying formation problem for general linear multi-agent systems using distributed event-triggered control strategy.Different from the previous works,to achieve the desired time-varying formation,a distributed control scheme is designed in an event-triggered way,in which for each agent the controller is triggered only at its own event times.The interaction topology among agents is assumed to be switching.The common Lyapunov function as well as Riccati inequality is applied to solve the time-varying formation problem.Moreover,the Zeno behavior of triggering time sequences can be excluded for each agent.Finally,a simulation example is presented to illustrate the effectiveness of the theoretical results.
基金Projects(61075065, 60774045) supported by the National Natural Science Foundation of China Project(CX2010B080) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Theoretical analysis of consensus for networked multi-agent systems with switching topologies was conducted.Supposing that information-exchange topologies of networked system are dynamic,a modified linear protocol is proffered which is more practical than existing ones.The definition of trajectory consensus is given and a new consensus protocol is exhibited such that multi-agent system achieves trajectory consensus.In addition,a formation control strategy is designed.A common Lyapunov function is proposed to analyze the consensus convergence of networked multi-agent systems with switching topologies.Simulations are provided to demonstrate the effectiveness of the theoretical results.
基金This work is supported by International Science and Technology Cooperation Program of China(2019YFE0100200)Beijing Natural Science Foundation(JQ18010).It is also partially supported by Tsinghua University-Didi Joint Research Center for Future Mobility.
文摘The time-varying network topology can significantly affect the stability of multi-agent systems.This paper examines the stability of leader-follower multi-agent systems with general linear dynamics and switching network topologies,which have applications in the platooning of connected vehicles.The switching interaction topology is modeled as a class of directed graphs in order to describe the information exchange between multi-agent systems,where the eigenvalues of every associated matrix are required to be positive real.The Hurwitz criterion and the Riccati inequality are used to design a distributed control law and estimate the convergence speed of the closed-loop system.A sufficient condition is provided for the stability of multi-agent systems under switching topologies.A common Lyapunov function is formulated to prove closed-loop stability for the directed network with switching topologies.The result is applied to a typical cyber-physical system—that is,a connected vehicle platoon—which illustrates the effectiveness of the proposed method.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51679057 and 51709062)Heilongjiang Province Outstanding Youth Fund (Grant No. J2016JQ0052)+2 种基金Equipment Preresearch Key Lab Fund (Grant No. 614221580107)China Postdoctoral Science Foundation (Grant No. 2019M651265)Harbin Science and Technology Talent Research Special Fund (Grant No.2017RAQXJ150)。
文摘A consensus algorithm proposed in the paper is applied to tackle remarkable problems of unmeasurable velocities,the environmental disturbances, and the limited communication environment for the multiple unmanned underwater vehicles(multi-UUVs). Firstly, for a complex nonlinear and coupled model of the unmanned underwater vehicle(UUV), a technique of feedback linearization is developed to transform the nonlinear UUV model into a secondorder integral UUV model. Secondly, to address the problem of the unavailable velocity information and environmental disturbances for the multi-UUVs system, we design a distributed extended state observer(DESO) to estimate the unmeasurable velocities and environmental disturbances using the relative position information. Finally,we propose a protocol based on the estimation information from the DESO and demonstrate that the multi-UUVs system with the switching directed topologies under the protocol can reach consensus asymptotically. The theoretical result proposed in the literature is verified by one numerical example.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2006AA040203 )the National Natural Science Foundation of China (No. 60775062)the Program for New Century Excellent Talents in University (No. NCET-07-0538).
文摘A mobile robot network is said to be easily scalable to any number of robots if its performance is kept almost fixed after these robots are added or some fail in the network. An interaction dynamics model based on motion synchronization is first established. Considering the mobility of mobile robot networks, we propose a relay switched, distributed topology control for the scalable network to drive neMy added robots to the most suitable positions with more neighbors as well as self-heal the blank positions of failed robots, and give a metric of the topology structure for evaluating the performance of network topologies. Then, we prove the stability of motion synchronization with the individual control based on Lyapunov exponent. Finally, the results of simulations have demonstrated the validity of the proposed modeling and control methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.62003003 and 62073076)the Natural Science Foundation of Anhui Province(Grant No.2008085QF304)the Talent Programme of Anhui Province for Young Scholars。
文摘Achieving asymptotical cooperative goal for multi-agent systems(MASs)with non-autonomous leaders(i.e.,leaders with nonzero inputs)is a critical but challenging issue.Traditional approach is to use discontinuous controllers which may cause chattering phenomenon in practical applications.How to achieve the asymptotical goal via a chattering free cooperative controller remains to be open so far.In this paper,an adaptive continuous controller is designed to achieve zero error consensus tracking in multiple Lur’e systems with a non-autonomous leader under directed switching topology.Firstly,an unknown input observer(UIO)based on relative outputs is given to estimate the relative full states.Then an adaptive continuous controller is designed by introducing a decay function which remains positive into the term that plays the role of eliminating the impacts of leader’s nonzero inputs.Secondly,by using multiple Lyapunov functions(MLFs)technique,it is proven that zero error consensus tracking can be achieved if the average dwell time(ADT)is greater than a positive threshold.Finally,theoretical result is verified by performing simulations on Chua’s circuits.Compared with existing work,the proposed controller can not only achieve asymptotical consensus,but also is chattering free.
基金supported by the National Natural Science Foundation of China under Grant Nos.U22A2043 and 61822307。
文摘This paper studies the formation control problem for the second-order heterogeneous nonlinear multi-agent systems(MASs)with switching topology and quantized control inputs.Compared with formation control under the fixed topology,under the switching topology inherent nonlinear dynamics of the agent and the connectivity change of the communication topology are considered.Moreover,to avoid the chattering phenomenon caused by unknown input disturbances,the hysteretic quantizers are incorporated to quantize the input signals.By using the Lyapunov stability theory and leader-follower formation approach,the proposed formation control scheme ensures that all signals of the MASs are semi-globally uniformly ultimately bounded(SGUUB).Finally,the efficiency of the theoretical results is proved by a simulation example.
基金National Natural Science Foundation of China(No.62073296)Natural Science Foundation of Zhejiang Province,China(No.LZ23F030010)Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province,China Jiliang University(No.ZNZZSZ-CJLU2022-03)Rights and permissions。
文摘To address fixed-time consensus problems of a class of leader-follower second-order nonlinear multi-agent systems with uncertain external disturbances,the event-triggered fixed-time consensus protocol is proposed.First,the virtual velocity is designed based on the backstepping control method to achieve the system consensus and the bound on convergence time only depending on the system parameters.Second,an event-triggered mechanism is presented to solve the problem of frequent communication between agents,and triggered condition based on state information is given for each follower.It is available to save communication resources,and the Zeno behaviors are excluded.Then,the delay and switching topologies of the system are also discussed.Next,the system stabilization is analyzed by Lyapunov stability theory.Finally,simulation results demonstrate the validity of the presented method.
基金National Natural Science Foundation of China(No.62003129)。
文摘This paper studies the time-varying formation-containment tracking control problems for unmanned aerial vehicle(UAV)swarm systems with switching topologies and a non-cooperative target,where the UAV swarm systems consist of one tracking-leader,several formation-leaders,and followers.The formation-leaders are required to accomplish a predefined time-varying formation and track the desired trajectory of the tracking-leader,and the states of the followers should converge to the convex hull spanned by those of the formation-leaders.First,a formation-containment tracking protocol is proposed with the neighboring relative information,and the feasibility condition for formation-containment tracking and the algebraic Riccati equation are given.Then,the stability of the control system with the designed control protocol is proved by constructing a reasonable Lyapunov function.Finally,the simulation examples are applied to verify the effectiveness of the theoretical results.The simulation results show that both the formation tracking error and the containment error are convergent,so the system can complete the formation containment tracking control well.In the actual battlefield,combat UAVs need to chase and attack hostile UAVs,but sometimes when multiple UAVs work together for military interception,formationcontainment tracking control will occur.
基金supported in part by the National Natural Science Foundation of China under Grant Nos 60874018, 60628302, and 60821091
文摘This paper considers a multi-agent tracking problem for a high-dimensional active leaderand variable interconnection topology. The state of the leader not only keeps changing but also maynot be measured. To estimate the state such a leader individually, a neighbor-based local controllertogether with a neighbor-based state-estimation rule is given for each autonomous agent. Then, theauthors prove that, with the help of a constructed common Lyapunov function (CLF), each agent cantrack the active leader with unmeasurable states. Finally, the authors explicitly construct a CLF foran active leader with unknown periodic input for illustration.