Polysurfacic tori or kideas are three-dimensional objects formed by rotating a regular polygon around a central axis. These toric shapes are referred to as “polysurfacic” because their characteristics, such as the n...Polysurfacic tori or kideas are three-dimensional objects formed by rotating a regular polygon around a central axis. These toric shapes are referred to as “polysurfacic” because their characteristics, such as the number of sides or surfaces separated by edges, can vary in a non-trivial manner depending on the degree of twisting during the revolution. We use the term “Kideas” to specifically denote these polysurfacic tori, and we represent the number of sides (referred to as “facets”) of the original polygon followed by a point, while the number of facets from which the torus is twisted during its revolution is indicated. We then explore the use of concave regular polygons to generate Kideas. We finally give acceleration for the algorithm for calculating the set of prime numbers.展开更多
In this paper we prove the persistence of hyperbolic invariant tori in generalized Hamiltonian systems, which may admit a distinct number of action and angle variables. The systems under consideration can be odd dimen...In this paper we prove the persistence of hyperbolic invariant tori in generalized Hamiltonian systems, which may admit a distinct number of action and angle variables. The systems under consideration can be odd dimensional in tangent direction. Our results generalize the well-known results of Graft and Zehnder in standard Hamiltonians. In our case the unperturbed Hamiltonian systems may be degenerate. We also consider the persistence problem of hyperbolic tori on submanifolds.展开更多
Theoretical and experimental studies associated with electric field effectson the stability and transport are briefly surveyed. The effects of radial electric field on thesuppression and/or enhancement of various micr...Theoretical and experimental studies associated with electric field effectson the stability and transport are briefly surveyed. The effects of radial electric field on thesuppression and/or enhancement of various microinstabilities such as drift waves, flute mode andtemperature gradient modes are discussed. The suppression of flow shear on the electron temperaturegradient mode in plasmas with slightly hollow density profiles is investigated by solving thegyrokinetic integral eigenvalue equation. Comparison between theoretical predictions andexperimental observations based on the HIBP measurements with high temporal and spatial resolutionsis made in bumpy tori and heliotron (CHS) devices.展开更多
A persistence theorem for resonant invariant tori with non-Hamiltonian perturbation is proved. The method is a combination of the theory of normally hyperbolic invariant manifolds and an appropriate continuation metho...A persistence theorem for resonant invariant tori with non-Hamiltonian perturbation is proved. The method is a combination of the theory of normally hyperbolic invariant manifolds and an appropriate continuation method. The results obtained are extensions of Chicone’s for the three dimensional non-Hamiltonian systems.展开更多
The thermostatted system is a conservative system different from Hamiltonian systems,and has attracted much attention because of its rich and different nonlinear dynamics.We report and analyze the multiple equilibria ...The thermostatted system is a conservative system different from Hamiltonian systems,and has attracted much attention because of its rich and different nonlinear dynamics.We report and analyze the multiple equilibria and curve axes of the cluster-shaped conservative flows generated from a generalized thermostatted system.It is found that the cluster-shaped structure is reflected in the geometry of the Hamiltonian,such as isosurfaces and local centers,and the shapes of cluster-shaped chaotic flows and invariant tori rely on the isosurfaces determined by initial conditions,while the numbers of clusters are subject to the local centers solved by the Hessian matrix of the Hamiltonian.Moreover,the study shows that the cluster-shaped chaotic flows and invariant tori are chained together by curve axes,which are the segments of equilibrium curves of the generalized thermostatted system.Furthermore,the interesting results are vividly demonstrated by the numerical simulations.展开更多
Boris numerical scheme due to its long-time stability,accuracy and conservative properties has been widely applied in many studies of magnetized plasmas.Such algorithms conserve the phase space volume and hence provid...Boris numerical scheme due to its long-time stability,accuracy and conservative properties has been widely applied in many studies of magnetized plasmas.Such algorithms conserve the phase space volume and hence provide accurate charge particle orbits.However,this algorithm does not conserve the energy in some special electromagnetic configurations,particularly for long simulation times.Here,we empirically analyze the energy behavior of Boris algorithm by applying it to a 2D autonomous Hamiltonian.The energy behavior of the Boris method is found to be strongly related to the integrability of our Hamiltonian system.We find that if the invariant tori is preserved under Boris discretization,the energy error can be bounded for an exponentially long time,otherwise the said error will show a linear growth.On the contrary,for a non-integrable Hamiltonian system,a random walk pattern has been observed in the energy error.展开更多
In this article, the classic dynamic of Paul trap problem is investigated. We give a complete description of the topological structure of Hamiltonian flows on the real phase space. Using the surgery’s theory of Fomen...In this article, the classic dynamic of Paul trap problem is investigated. We give a complete description of the topological structure of Hamiltonian flows on the real phase space. Using the surgery’s theory of Fomenko Liouville tori, all generic bifurcations of the common level sets of the first integrals were described theoretically. We give also an explicit periodic solution for singular values of the first integrals. Numerical investigations are carried out for all generic bifurcations and we observe order-chaos transition when the critical value of a control parameter is varied.展开更多
In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle...In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensional tori might be elliptic, hyperbolic, or of mixed type.展开更多
In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small per...In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems.展开更多
In this paper we consider the persistence of invariant tori of an integrable Hamiltonian system with a quasiperiodic perturbation. It is proved that if the unperturbed system satisfies the Rtissmann non-degenerate con...In this paper we consider the persistence of invariant tori of an integrable Hamiltonian system with a quasiperiodic perturbation. It is proved that if the unperturbed system satisfies the Rtissmann non-degenerate condition and the perturbed system satisfies the co-linked non-resonant condition, then the majority of invariant tori is persistent under the perturbation.展开更多
In this paper we investigate the nearly small twist mappings with intersection property. With a certain non-degenerate condition, we proved that the most of invariant tori of the original small twist mappings will sur...In this paper we investigate the nearly small twist mappings with intersection property. With a certain non-degenerate condition, we proved that the most of invariant tori of the original small twist mappings will survive afer small perturtations. The persisted invariant tori are close to the unperturbed ones when the perturbation are small. The orbits reduced by those mappings are quasi-periodic in the invariant tori with the frequences closing to the original ones.展开更多
文摘Polysurfacic tori or kideas are three-dimensional objects formed by rotating a regular polygon around a central axis. These toric shapes are referred to as “polysurfacic” because their characteristics, such as the number of sides or surfaces separated by edges, can vary in a non-trivial manner depending on the degree of twisting during the revolution. We use the term “Kideas” to specifically denote these polysurfacic tori, and we represent the number of sides (referred to as “facets”) of the original polygon followed by a point, while the number of facets from which the torus is twisted during its revolution is indicated. We then explore the use of concave regular polygons to generate Kideas. We finally give acceleration for the algorithm for calculating the set of prime numbers.
文摘In this paper we prove the persistence of hyperbolic invariant tori in generalized Hamiltonian systems, which may admit a distinct number of action and angle variables. The systems under consideration can be odd dimensional in tangent direction. Our results generalize the well-known results of Graft and Zehnder in standard Hamiltonians. In our case the unperturbed Hamiltonian systems may be degenerate. We also consider the persistence problem of hyperbolic tori on submanifolds.
文摘Theoretical and experimental studies associated with electric field effectson the stability and transport are briefly surveyed. The effects of radial electric field on thesuppression and/or enhancement of various microinstabilities such as drift waves, flute mode andtemperature gradient modes are discussed. The suppression of flow shear on the electron temperaturegradient mode in plasmas with slightly hollow density profiles is investigated by solving thegyrokinetic integral eigenvalue equation. Comparison between theoretical predictions andexperimental observations based on the HIBP measurements with high temporal and spatial resolutionsis made in bumpy tori and heliotron (CHS) devices.
文摘A persistence theorem for resonant invariant tori with non-Hamiltonian perturbation is proved. The method is a combination of the theory of normally hyperbolic invariant manifolds and an appropriate continuation method. The results obtained are extensions of Chicone’s for the three dimensional non-Hamiltonian systems.
基金the National Natural Science Foundation of China(Grant Nos.61973175 and 61873186)the South African National Research Foundation(Grant No.132797)+1 种基金the South African National Research Foundation Incentive(Grant No.114911)the South African Eskom Tertiary Education Support Programme.
文摘The thermostatted system is a conservative system different from Hamiltonian systems,and has attracted much attention because of its rich and different nonlinear dynamics.We report and analyze the multiple equilibria and curve axes of the cluster-shaped conservative flows generated from a generalized thermostatted system.It is found that the cluster-shaped structure is reflected in the geometry of the Hamiltonian,such as isosurfaces and local centers,and the shapes of cluster-shaped chaotic flows and invariant tori rely on the isosurfaces determined by initial conditions,while the numbers of clusters are subject to the local centers solved by the Hessian matrix of the Hamiltonian.Moreover,the study shows that the cluster-shaped chaotic flows and invariant tori are chained together by curve axes,which are the segments of equilibrium curves of the generalized thermostatted system.Furthermore,the interesting results are vividly demonstrated by the numerical simulations.
基金Abdullah Zafar acknowledges the Chinese Scholarship Council(CSC)to support him as the 2015 CSC awardee(CSC No.2015GXZQ56).
文摘Boris numerical scheme due to its long-time stability,accuracy and conservative properties has been widely applied in many studies of magnetized plasmas.Such algorithms conserve the phase space volume and hence provide accurate charge particle orbits.However,this algorithm does not conserve the energy in some special electromagnetic configurations,particularly for long simulation times.Here,we empirically analyze the energy behavior of Boris algorithm by applying it to a 2D autonomous Hamiltonian.The energy behavior of the Boris method is found to be strongly related to the integrability of our Hamiltonian system.We find that if the invariant tori is preserved under Boris discretization,the energy error can be bounded for an exponentially long time,otherwise the said error will show a linear growth.On the contrary,for a non-integrable Hamiltonian system,a random walk pattern has been observed in the energy error.
文摘In this article, the classic dynamic of Paul trap problem is investigated. We give a complete description of the topological structure of Hamiltonian flows on the real phase space. Using the surgery’s theory of Fomenko Liouville tori, all generic bifurcations of the common level sets of the first integrals were described theoretically. We give also an explicit periodic solution for singular values of the first integrals. Numerical investigations are carried out for all generic bifurcations and we observe order-chaos transition when the critical value of a control parameter is varied.
基金Partially supported by the Talent Foundation (522-7901-01140418) of Northwest A & FUniversity.
文摘In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensional tori might be elliptic, hyperbolic, or of mixed type.
基金Partially supported by the SFC(10531050,10225107)of Chinathe SRFDP(20040183030)the 985 program of Jilin University
文摘In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems.
文摘In this paper we consider the persistence of invariant tori of an integrable Hamiltonian system with a quasiperiodic perturbation. It is proved that if the unperturbed system satisfies the Rtissmann non-degenerate condition and the perturbed system satisfies the co-linked non-resonant condition, then the majority of invariant tori is persistent under the perturbation.
文摘In this paper we investigate the nearly small twist mappings with intersection property. With a certain non-degenerate condition, we proved that the most of invariant tori of the original small twist mappings will survive afer small perturtations. The persisted invariant tori are close to the unperturbed ones when the perturbation are small. The orbits reduced by those mappings are quasi-periodic in the invariant tori with the frequences closing to the original ones.