期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Local Torrential Rainfall Event within a Mei-Yu Season Mesoscale Convective System:Importance of Back-Building Processes
1
作者 Honglei ZHANG Ming XUE +2 位作者 Hangfeng SHEN Xiaofan LI Guoqing ZHAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期847-863,共17页
An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.T... An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.This rainfall event had two major rainbands.One was caused by a quasi-stationary convective line,and the other by a backbuilding convective line related to the interaction of the outflow boundary from the first rainband and an existing low-level mesoscale convergence line associated with a mei-yu frontal system.The rainfall event lasted 4 h,while the back-building process occurred in 2 h when the extreme rainfall center formed.So far,few studies have examined the back-building processes in the mei-yu season that are caused by the interaction of a mesoscale convergence line and a convective cold pool.The two rainbands are successfully reproduced by the Weather Research and Forecasting(WRF)model with fourlevel,two-way interactive nesting.In the model,new cells repeatedly occur at the west side of older cells,and the backbuilding process occurs in an environment with large CAPE,a low LFC,and plenty of water vapor.Outflows from older cells enhance the low-level convergence that forces new cells.High precipitation efficiency of the back-building training cells leads to accumulated precipitation of over 150 mm.Sensitivity experiments without evaporation of rainwater show that the convective cold pool plays an important role in the organization of the back-building process in the current extreme precipitation case. 展开更多
关键词 torrential rainfall back-building processes numerical simulation trigger mechanism convergence line convective cold pool
下载PDF
Diagnosis of the Kinetic Energy of the“21·7”Extreme Torrential Rainfall Event in Henan Province,China
2
作者 Xiuping YAO Ruoying LI +1 位作者 Xiaohong BAO Qiaohua LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期73-83,共11页
An extreme torrential rain(ETR)event occurred in Henan Province,China,during 18-21 July 2021.Based on hourly rain-gauge observations and ERA5 reanalysis data,the ETR was studied from the perspective of kinetic energy(... An extreme torrential rain(ETR)event occurred in Henan Province,China,during 18-21 July 2021.Based on hourly rain-gauge observations and ERA5 reanalysis data,the ETR was studied from the perspective of kinetic energy(K),which can be divided into rotational wind(V_(R))kinetic energy(K_(R)),divergent wind kinetic energy(K_(D)),and the kinetic energy of the interaction between the divergent and rotational winds(K_(RD)).According to the hourly precipitation intensity variability,the ETR process was divided into an initial stage,a rapid increase stage,and maintenance stage.Results showed that the intensification and maintenance of ETR were closely related to the upper-level K,and most closely related to the upperlevel K_(R),with a correlation coefficient of up to 0.9.In particular,the peak value of hourly rainfall intensity lagged behind the K_(R) by 8 h.Furthermore,diagnosis showed that K transformation from unresolvable to resolvable scales made the ETR increase slowly.The meridional rotational wind(u_(R))and meridional gradient of the geopotential(φ)jointly determined the conversion of available potential energy(APE)to K_(R) through the barotropic process,which dominated the rapid enhancement of K_(R) and then caused the rapid increase in ETR.The transportation of K by rotational wind consumed K_(R),and basically offset the K_(R) produced by the barotropic process,which basically kept K_(R) stable at a high value,thus maintaining the ETR. 展开更多
关键词 extreme torrential rain rotational kinetic energy kinetic energy generation and transport barotropic process
下载PDF
Impacts of Cloud-Induced Mass Forcing on the Development of Moist Potential Vorticity Anomaly During Torrential Rains 被引量:20
3
作者 高守亭 周玉淑 +1 位作者 崔晓鹏 戴国平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第6期923-927,共5页
The impacts of cloud-induced mass forcing on the development of the moist potential vorticity (MPV) anomaly associated with torrential rains are investigated by using NCEP/NCAR 1? × 1? data. The MPV ten... The impacts of cloud-induced mass forcing on the development of the moist potential vorticity (MPV) anomaly associated with torrential rains are investigated by using NCEP/NCAR 1? × 1? data. The MPV tendency equation with the cloud-induced mass forcing is derived, and applied to the torrential rain event over the Changjiang River-Huaihe River Valleys during 26–30 June 1999. The result shows that positive anomalies are located mainly between 850 hPa and 500 hPa, while the maximum MPV, maximum positive tendency of the MPV, and maximum surface rainfall are nearly collocated. The cloud-induced mass forcing contributes to the positive tendency of the moist potential vorticity anomaly. The results indicate that the MPV may be used to track the propagation of rain systems for operational applications. 展开更多
关键词 torrential rain cloud-induced mass forcing moist potential vorticity anomaly
下载PDF
Dominant Cloud Microphysical Processes of a Torrential Rainfall Event in Sichuan, China 被引量:9
4
作者 HUANG Yongjie CUI Xiaopeng 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期389-400,共12页
High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microp... High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microphysical processes of the torrential rainfall.The results showed that:(1) In the strong precipitation period,particle sizes of all hydrometeors increased,and mean-mass diameters of graupel increased the most significantly,as compared with those in the weak precipitation period; (2) The terminal velocity of raindrops was the strongest among all hydrometeors,followed by graupel's,which was much smaller than that of raindrops.Differences between various hydrometeors' terminal velocities in the strong precipitation period were larger than those in the weak precipitation period,which favored relative motion,collection interaction and transformation between the particles.Absolute terminal velocity values of raindrops and graupel were significantly greater than those of air upward velocity,and the stronger the precipitation was,the greater the differences between them were; (3) The orders of magnitudes of the various hydrometeors' sources and sinks in the strong precipitation period were larger than those in the weak precipitation period,causing a difference in the intensity of precipitation.Water vapor,cloud water,raindrops,graupel and their exchange processes played a major role in the production of the torrential rainfall,and there were two main processes via which raindrops were generated:abundant water vapor condensed into cloud water and,on the one hand,accretion of cloud water by rain water formed rain water,while on the other hand,accretion of cloud water by graupel formed graupel,and then the melting of graupel formed rain water. 展开更多
关键词 torrential rainfall SICHUAN cloud microphysical processes numerical simulation
下载PDF
Mesoscale Dynamics and Its Application in Torrential Rainfall Systems in China 被引量:4
5
作者 GAO Shouting TAN Zhemin +6 位作者 ZHAO Sixiong LUO Zhexian LU Hancheng WANG Donghai CUI Chunguang CUI Xiaopeng SUN Jianhua 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第2期192-205,共14页
Progress over the past decade in understanding moisture-driven dynamics and torrential rain storms in China is reviewed in this paper. First, advances in incorporating moisture effects more realistically into theory a... Progress over the past decade in understanding moisture-driven dynamics and torrential rain storms in China is reviewed in this paper. First, advances in incorporating moisture effects more realistically into theory are described, including the development of a new parameter, generalized moist potential vorticity(GMPV) and an improved moist ageostrophic Q vector(Qum). Advances in vorticity dynamics are also described, including the adoption of a "parcel dynamic" approach to investigate the development of the vertical vorticity of an air parcel; a novel theory of slantwise vorticity development, proposed because vorticity develops easily near steep isentropic surfaces; and the development of the convective vorticity vector(CVV)as an effective new tool. The significant progress in both frontal dynamics and wave dynamics is also summarized, including the geostrophic adjustment of initial unbalanced flow and the dual role of boundary layer friction in frontogenesis, as well as the interaction between topography and fronts, which indicate that topographic perturbations alter both frontogenesis and frontal structure. For atmospheric vortices, mixed wave/vortex dynamics has been extended to explain the propagation of spiral rainbands and the development of dynamical instability in tropical cyclones. Finally, we review wave and basic flow interaction in torrential rainfall, for which it was necessary to extend existing theory from large-scale flows to mesoscale fields, enriching our knowledge of mesoscale atmospheric dynamics. 展开更多
关键词 mesoscale dynamics torrential rainfall moist atmosphere vorticity dynamics wave-flow interaction
下载PDF
Synoptic Characteristics Related to Warm-Sector Torrential Rainfall Events in South China During the Annually First Rainy Season 被引量:4
6
作者 吴亚丽 高郁东 +3 位作者 陈德辉 蒙伟光 林良勋 林文实 《Journal of Tropical Meteorology》 SCIE 2020年第3期253-260,共8页
Warm-sector torrential rainfall(WSTR)events that occur in the annually first rainy season in south China are characterized by high rainfall intensity and low radar echo centroids.To understand the synoptic characteris... Warm-sector torrential rainfall(WSTR)events that occur in the annually first rainy season in south China are characterized by high rainfall intensity and low radar echo centroids.To understand the synoptic characteristics related to these features,16 WSTR events that occurred in 2013-2017 were examined with another 16 squall line(SL)events occurred during the same period as references.Composite analysis derived from ERA-Interim reanalysis data indicated the importance of the deep layer of warm and moist air for WSTR events.The most significant difference between WSTR and SL events lies in their low-level convergence and lifting;for WSTR events,the low-level convergence and lifting is much shallower with comparable or stronger intensity.The trumpet-shaped topography to the north of the WSTR centers is favorable for the development of such shallow convergences in WSTR events.Results in this study will provide references for future studies to improve the predictability of WSTR. 展开更多
关键词 warm-sector torrential rainfall vertical cross section low-echo centroid shallow convergence trumpetshaped topography
下载PDF
Torrential flood prevention in the Kolubara river basin 被引量:2
7
作者 KOSTADINOV Stanimir DRAGI?EVI? Slavoljub +2 位作者 STEFANOVI? Tomislav NOVKOVI? Ivan PETROVI? M.Ana 《Journal of Mountain Science》 SCIE CSCD 2017年第11期2230-2245,共16页
One of the most vulnerable parts to natural hazards in Serbia is Kolubara river basin. In the past, during the period from 1929 to 2013, 121 torrential flood events in the Kolubara river basin were recorded which show... One of the most vulnerable parts to natural hazards in Serbia is Kolubara river basin. In the past, during the period from 1929 to 2013, 121 torrential flood events in the Kolubara river basin were recorded which show that this territory is extremely vulnerable to the torrential floods. The extreme event which occurred in May 2014 causing the catastrophic material damages and casualties was the latest and historical flood. The analysis of natural conditions in the Kolubara basin uniformly showed that this area is predisposed to a greater number of torrential floods due to its geomorphological, hydrological and land use properties. Torrential floods are closely related to the intensity and spatial distribution of erosive processes in the upper part of the Kolubara basin. The estimation of soil erosion potential is generally achieved by Erosion Potential Model(EPM). For the purposes of determining the degree of torrential properties in various water streams in the Kolubara basin, the calculation ofsusceptibility to torrential floods was assessed by Flash Flood Potential Index(FFPI). More than half of the basin area(57.2%) is located within the category of very weak and weak erosion(Z_(sr) = 0.35), but the category of medium erosion is geospatially very common. Such a distribution of medium erosion category provides conditions for generating, i.e. production of sediment which would boost torrential properties of water streams. After the classification of the obtained FFPI values it was determined that 25% of the Kolubara basin is very susceptible to torrents and this data should be seriously taken into consideration. Based on the analyses, the best and most successful manner of defence is prevention which consists of the integrated river basin management system(integrated torrent control system) so that technical works in hydrographic networks of torrents and biological and biotechnical works on the slope of the basin would be the best solution. Permanent control of erosive and torrential processes in the river basin will be not only important for flood control but it can also protect the existing and future water reservoirs and retentions fromsiltation with erosion sediment which is of great significance to the water management, agriculture, energy sector, and the entire society. 展开更多
关键词 Soil EROSION torrential floods Erosioncontrol WORKS Integrated RIVER BASIN management
下载PDF
Energy Paths that Sustain the Warm-Sector Torrential Rainfall over South China and Their Contrasts to the Frontal Rainfall: A Case Study 被引量:2
8
作者 Shenming FU Jingping ZHANG +2 位作者 Yali LUO Wenying YANG Jianhua SUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1519-1535,共17页
Predicting warm-sector torrential rainfall over South China,which is famous for its destructive power,is one of the most challenging issues of the current numerical forecast field.Insufficient understanding of the key... Predicting warm-sector torrential rainfall over South China,which is famous for its destructive power,is one of the most challenging issues of the current numerical forecast field.Insufficient understanding of the key mechanisms underlying this type of event is the root cause.Since understanding the energetics is crucial to understanding the evolutions of various types of weather systems,a general methodology for investigating energetics of torrential rainfall is provided in this study.By applying this methodology to a persistent torrential rainfall event which had concurrent frontal and warm-sector precipitation,the first physical image on the energetics of the warm-sector torrential rainfall is established.This clarifies the energy sources for producing the warm-sector rainfall during this event.For the first time,fundamental similarities and differences between the warm-sector and frontal torrential rainfall are shown in terms of energetics.It is found that these two types of rainfall mainly differed from each other in the lower-tropospheric dynamical features,and their key differences lay in energy sources.Scale interactions(mainly through downscale energy cascade and transport)were a dominant factor for the warm-sector torrential rainfall during this event,whereas,for the frontal torrential rainfall,they were only of secondary importance.Three typical signals in the background environment are found to have supplied energy to the warm-sector torrential rainfall,with the quasi-biweekly oscillation having contributed the most. 展开更多
关键词 torrential rainfall warm-sector rainfall frontal rainfall South China scale interactions baroclinic energy conversion
下载PDF
Evolution of Instability before and during a Torrential Rainstorm in North China 被引量:2
9
作者 Lu LIU Lingkun RAN Shouting GAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第1期110-120,共11页
NCEP-NCAR reanalysis data were used to analyze the characteristics and evolution mechanism of convective and symmetric instability before and during a heavy rainfall event that occurred in Beijing on 21 July 2012.Appr... NCEP-NCAR reanalysis data were used to analyze the characteristics and evolution mechanism of convective and symmetric instability before and during a heavy rainfall event that occurred in Beijing on 21 July 2012.Approximately twelve hours before the rainstorm,the atmosphere was mainly dominated by convective instability in the lower level of 900-800 hPa.The strong southwesterly low-level jet conveyed the moist and warm airflow continuously to the area of torrential rain,maintaining and enhancing the unstable energy.When the precipitation occurred,unstable energy was released and the convective instability weakened.Meanwhile,due to the baroclinicity enhancement in the atmosphere,the symmetric instability strengthened,maintaining and promoting the subsequent torrential rain.Deriving the convective instability tendency equation demonstrated that the barotropic component of potential divergence and the advection term played a major role in enhancing the convective instability before the rainstorm.Analysis of the tendency equation of moist potential vorticity showed that the coupled term of vertical vorticity and the baroclinic component of potential divergence was the primary factor influencing the development of symmetric instability during the precipitation.Comparing the effects of these factors on convective instability and symmetric instability showed some correlation. 展开更多
关键词 convective instability symmetric instability torrential rain potential divergence
下载PDF
A Modeling Study of Surface Rainfall Processes Associated with a Torrential Rainfall Event over Hubei,China,during July 2007 被引量:1
10
作者 周玉淑 崔春光 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第6期1459-1470,共12页
The surface rainfall processes associated with the torrential rainfall event over Hubei,China,during July 2007 were investigated using a two-dimensional cloud-resolving model.The model integrated the large-scale verti... The surface rainfall processes associated with the torrential rainfall event over Hubei,China,during July 2007 were investigated using a two-dimensional cloud-resolving model.The model integrated the large-scale vertical velocity and zonal wind data from National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) for 5 days.The time and model domain mean surface rain rate was used to identify the onset,mature,and decay periods of rainfall.During the onset period,the descending motion data imposed in the lower troposphere led to a large contribution of stratiform rainfall to the model domain mean surface rainfall.The local atmospheric drying and transport of rain from convective regions mainly contributes to the stratiform rainfall.During the mature periods,the ascending motion data integrated into the model was so strong that water vapor convergence was the dominant process for both convective and stratiform rainfall.Both convective and stratiform rainfalls made important contributions to the model domain mean surface rainfall.During the decay period,descending motion data input into the model prevailed,making stratiform rainfall dominant.Stratiform rainfall was mainly caused by the water vapor convergence over raining stratiform regions. 展开更多
关键词 surface rainfall processes torrential rainfall cloud-resolving model
下载PDF
Sensitivity Analysis of Ensemble Simulations on a Torrential Rainfall Case over South China Using Multiple PBL and SL Parameterizations 被引量:1
11
作者 黄龄 《Journal of Tropical Meteorology》 SCIE 2020年第2期208-222,共15页
A good representation of the interaction between the planetary boundary layer(PBL)and the surface layer(SL)in numerical models is of great importance for the prediction of the initiation and development of convection.... A good representation of the interaction between the planetary boundary layer(PBL)and the surface layer(SL)in numerical models is of great importance for the prediction of the initiation and development of convection.This study examined an ensemble that consists of the available suites of PBL and SL parameterizations based on a torrential rainfall event over south China.The sensitivity of the simulations was investigated against objective measurements using multiple PBL and SL parameterization schemes.The main causes of the bias from different parameterization schemes were further analysed by comparing the good and bad ensemble members.The results showed that good members tended to underestimate the rainfall amount but presented a decent evolution of mesoscale convective systems that were responsible for the torrential rainfall.Using the total energy mass flux(TEMF)scheme,the bad members overestimated the amount and spatial coverage of rainfall.The failure of the bad member was due to a spurious convection initiation(CI)resulting from the overestimated high-θe elevated air.The spurious CI developed and expanded rapidly,causing intensive and extensive rainfall over south China.Consistent with previous studies,the TEMF scheme tends to produce a warmer and moister PBL environment.The detailed sensitivity analysis of this case may provide reference for the operational forecast of rainfall over south China using multiple PBL and SL parameterizations. 展开更多
关键词 PBL SL PARAMETERIZATION torrential rain
下载PDF
Numerical Simulation and Moist Potential Vorticity Analysis of Torrential Rain in Jiangxi Province during June 2010 被引量:1
12
作者 Zugang ZHOU Yongqiang JIANG +2 位作者 Gaoying ZHANG Wenjun ZHANG Chaohui CHEN 《Asian Agricultural Research》 2014年第6期79-82,共4页
Based on the conventional ground observational data,a numerical simulation and moist potential vorticity( MPV) analysis has been carried on heavy rainfall event over Jiangxi province from 19 June to 20 June 2010,with ... Based on the conventional ground observational data,a numerical simulation and moist potential vorticity( MPV) analysis has been carried on heavy rainfall event over Jiangxi province from 19 June to 20 June 2010,with a meso-scale rainstorm model. The results show that this rare rainstorm is a typical heavy rainfall over Meiyu front. The cold air flow behind North China vortex joined up the southwestern flow located in the northwest part of the strong and stable subtropical high,thus the cold air and warm air converged and maintained over the northern part of Hunan and Jiangxi province. The simulated precipitation of the high resolution model is very similar to the observational rainfall. The model has a good predictive skill for the location,intensity and center of heavy rainfall. By moist potential vorticity analysis,it is found that the distribution characteristic of MPV which heavy rainfall happens ahead has an obvious indication for precipitation forecast. The vertical overlapping of the positive and negative MPV1 areas is favorable to the generation and development of rainstorm. This zone is also the conjoint area of convective instability and baroclinic instability. 展开更多
关键词 torrential RAIN PRECIPITATION FORECAST NUMERICAL s
下载PDF
Impact of Large Fresh Water Discharges into Hakata Bay Due to Torrential Rain Using Nested Two-Dimensional Convective-Dispersive Model
13
作者 A. Fukuda T. Tabata +2 位作者 Y. Honda K. Hiramatsu M. Harada 《Journal of Water Resource and Protection》 2017年第6期553-565,共13页
In this study, numerical simulation of a two-dimensional convective-dispersive model in Hakata Bay, Japan, is performed to analyze the impact of major river discharges due to torrential rain in Fukuoka City. Tank mode... In this study, numerical simulation of a two-dimensional convective-dispersive model in Hakata Bay, Japan, is performed to analyze the impact of major river discharges due to torrential rain in Fukuoka City. Tank models are applied to calculate river discharges, which are taken into consideration as river inflow in the hydrodynamic model of Hakata Bay. A two-way nesting “edge” technique is developed and applied in the model in order to consider the influence of narrow and complex geographical features. The area around “Island City” and Imazu Bay are calculated in high resolution. The resulting model has high reproducibility since the calculated river discharges, tidal current, and salinity show good agreement with observed data. To analyze the impact of large river discharges, the calculation period is set from 11 September 2002 to 21 September 2002 since there was torrential rain on September 16 in the given year in Fukuoka City (163.5 mm/d). The results show that low-salinity water covered the whole of the inner part of Hakata Bay, and water of lower salinity than outer sea water (<34.0 psu) spread out to the bay’s mouth two days after the torrential rain event. Fresh water covered the entire area of Imazu Bay and flowed out from the mouth of the Bay after the torrential rain event. The behavior of fresh water after a few days of torrential rain was remarkably different from normal discharge river flow. These results indicate that the environment in Imazu Bay can be degraded severely by torrential rain. Therefore, countermeasures to protect ecosystems in Hakata Bay must be examined immediately. 展开更多
关键词 TWO-DIMENSIONAL Convective-Dispersive MODEL Edge NESTING Tank MODEL torrential Rain Hakata BAY
下载PDF
Conventional Analysis on a Heavy or Torrential Rain Weather Process
14
作者 GU Zhen-hai,ZHANG Qi-zhong,MO Yao Binzhou Meteorological Bureau in Shandong Province,Binzhou 256612,China 《Meteorological and Environmental Research》 CAS 2011年第5期16-19,共4页
[Objective] The research aimed to analyze a turning weather process in Binzhou City of Shandong Province in midsummer of 2010.[Method] Started from the short-term forecast ideas,the formation reason of heavy or torren... [Objective] The research aimed to analyze a turning weather process in Binzhou City of Shandong Province in midsummer of 2010.[Method] Started from the short-term forecast ideas,the formation reason of heavy or torrential rain and local heavy rainstorm in Binzhou City during 4-5 August,2010 was analyzed from the circulation situation,physical quantity field,radar echo and so on.[Result] The westerly trough and cold air were the trigger mechanisms of precipitation.The warm wet air flow at the edge of subtropical high and the high-altitude low trough were the main systems of precipitation.It was the typical precipitation process that the northwest of subtropical high overlapped with the westerly trough.In the prior period,the high temperature continued.The cold air at 500 hPa made the convection strengthen.It was the main reason that the local precipitation was strong.In the forecast of rainstorm,the specific humidity,K index and SI index were the good physical quantities and reference indexes.In the formation process of rainstorm,K index had the increasing process.When the rainstorm finished,or the rain intensity weakened,K index decreased obviously.SI index indicated the development of convective precipitation.The radar echo analysis found that the mesocyclone appeared in the process for a short time.For it weakened quickly and disappeared in the shift process,the strong precipitation and gale were formed in the west of Binzou,but the hail wasn’t generated.[Conclusion] The research provided the experience for the forecast of such weather in future. 展开更多
关键词 Heavy or torrential rain Circulation situation Physical quantity field Radar echo Convective rainstorm China
下载PDF
Search Methods for Evacuation Routes during Torrential Rain Disasters Using Genetic Algorithms and GIS
15
作者 Koichiro Tani Kayoko Yamamoto 《Journal of Geographic Information System》 2020年第3期256-274,共19页
The present study aims to propose a method to search for the most appropriate evacuation routes that take calorie consumption required for evacuees to reach evacuation sites into consideration, by focusing on disaster... The present study aims to propose a method to search for the most appropriate evacuation routes that take calorie consumption required for evacuees to reach evacuation sites into consideration, by focusing on disasters caused by heavy rainfall, and using genetic algorithm (GA) and geographic information system (GIS). Specifically, GA was used to design and develop an evacuation route search algorithm and 4 parameters including the number of generations, mutation rate number of individuals and crossover rate were set by conducting sensitivity analyses. Additionally, GIS was also used to create road network data and contour data for digital maps and calculate the altitude of each crossover point. Based on these, the necessary calorie consumption to reach evacuation sites for each route was calculated, and that made it possible to derive the several evacuation routes with the small values unlike other methods. By using GA and GIS to suggest detailed evacuation routes, which take the necessary calories required to reach evacuation sites into consideration, it can be expected that the present study should contribute to the decision-making of evacuees. Additionally, as the method is based on public information, the method has high spatial and temporal repeatability. Because evacuation routes are proposed based on quantified data, the selected evacuation routes are quantitatively evaluated, and are an effective indicator for deciding on an evacuation route. Additionally, evacuation routes that accurately reflect current conditions can be derived by utilizing detailed information as data. 展开更多
关键词 torrential Rain Disasters Evacuation Route Evacuation Site Calorie Consumption Genetic Algorism (GA) Geographic Information Systems (GIS)
下载PDF
Study on Torrential Rain Disaster Index and Threshold in Zhangjiajie City
16
作者 Yueyong LI Wei ZHOU +1 位作者 Hao LI Ke LIANG 《Meteorological and Environmental Research》 CAS 2022年第5期60-67,72,共9页
Based on the precipitation data and torrential rain disaster data in Zhangjiajie City of Hunan Province from 2016 to 2020,taking the claim cases of the property and cargo insurance(hereinafter referred to as"prop... Based on the precipitation data and torrential rain disaster data in Zhangjiajie City of Hunan Province from 2016 to 2020,taking the claim cases of the property and cargo insurance(hereinafter referred to as"property and cargo insurance")from Hunan Branch of the People’s Insurance Company of China as the research sample,the Dominance Analysis Method was used to determine the influence weights of disaster-causing factors to establish a comprehensive disaster-causing index(I)model of torrential rain.Second,an exponential function was used to fit the relationship between the number of town or street which filed claims of property and cargo insurance and I,then to determine the threshold of I corresponding to different accident levels.The claim cases caused by torrential rain disaster in Zhangjiajie in the flood season of 2021 were selected to verify the I and its threshold.The results showed that the number of property and cargo insurance accidents caused by torrential rain in Zhangjiajie was generally low in east and west but high in middle areas.Among the disaster-causing factors,the weight of the 96-h accumulated precipitation on the scope of accident was the largest,reaching 28.6%.The simulated grades of the scope of accident,the amount of claim and the number of accidents of property and cargo insurance had a high correlation with the grades of actual disasters,and all passed the test at the 0.01 significance level.The threshold test results showed that the consistency rate or accuracy between the predicted level and the actual level of torrential rain disaster-causing cases was 71.4%,in which the predicted values of accuracy for the mild,moderate and severe disaster levels were 70%,70%and 100%,respectively.Therefore,the threshold of I established in this study can be used for the industrial meteorological services related to the property and cargo insurance in Zhangjiajie. 展开更多
关键词 torrential rain Property and cargo insurance Disaster threshold
下载PDF
Objective Analysis of Circulation Extremes During the 21 July 2012Torrential Rain in Beijing 被引量:4
17
作者 赵洋洋 张庆红 +2 位作者 杜宇 江漫 张季平 《Acta meteorologica Sinica》 SCIE 2013年第5期626-635,共10页
It has been reported that the heaviest rain event since 1951 hit Beijing on 21 July 2012 (henceforth referred to as the 721 case).The frequency and extreme attributes of the large-scale circulation patterns observed... It has been reported that the heaviest rain event since 1951 hit Beijing on 21 July 2012 (henceforth referred to as the 721 case).The frequency and extreme attributes of the large-scale circulation patterns observed during the 721 case are explored by using obliquely rotated T-mode principle component analysis (PCA) and reanalysis data from NCEP/NCAR.The occurrence frequency of the 721-type circulation during the summers of 1951-2012 is 10.9%,while the frequency of torrential rain under this type of circulation is 4.51%.Relative to other rainstorms with similar large-scale circulations during the study period,the 721 case is characterized by a more westward extension of the subtropical high over the western North Pacific,a stronger low-level jet in the lower troposphere over the south of Beijing,a larger amount of ambient precipitable water,and a stronger vertical wind shear over Beijing.Among the 621 days with the 721-type circulation during the study period,the 721 case ranks the 54th in terms of the 925-hPa low-level jet south of Beijing,the 209th in terms of the local vertical wind shear,and the 8th in terms of the local precipitable water.The 721 case is particularly extreme with respect to the 925-hPa low-level jet south of Beijing and local precipitable water.Cases with similar circulations and equal or greater values of the 925-hPa low-level jet south of Beijing and local precipitable water have occurred thrice during the summers of 1951-2012 (i.e.,once every 21 years). 展开更多
关键词 torrential rain circulation classification low-level jet vertical wind shear precipitable water
原文传递
NUMERICAL SIMULATION OF MICROPHYSICAL PROCESSES IN CUMULONIMBUS——PART Ⅱ CASE STUDIES OF SHOWER,HAILSTORM AND TORRENTIAL RAIN 被引量:4
18
作者 胡志晋 何观芳 《Acta meteorologica Sinica》 SCIE 1989年第2期185-199,共15页
A shower cloud observed in Jiangxi,a hailstorm observed in Hebei and“75.8”torrential rain in Henan are simulated with our microphysical model in a one-dimensional framework.The model,using the radio- sonde data as i... A shower cloud observed in Jiangxi,a hailstorm observed in Hebei and“75.8”torrential rain in Henan are simulated with our microphysical model in a one-dimensional framework.The model,using the radio- sonde data as input,gets its output which shows agreement in many aspects as compared with observations in each case.The glaciation of small cumulus cloud,low precipitation efficiency of hailstorm and the per- sistence of torrential rain are demonstrated.It is also shown that the Bergeron process has little influence, but the warm-rain process plays an important role in the formation of precipitation in cumulonimbus with a warm cloud base. 展开更多
关键词 PART CASE STUDIES OF SHOWER HAILSTORM AND torrential RAIN NUMERICAL SIMULATION OF MICROPHYSICAL PROCESSES IN CUMULONIMBUS
原文传递
Role of a Meso-γ Vortex in Meiyu Torrential Rainfall over the Hangzhou Bay,China:An Observational Study 被引量:2
19
作者 翟国庆 张红蕾 +3 位作者 沈杭锋 朱佩君 苏涛 李小凡 《Journal of Meteorological Research》 SCIE CSCD 2015年第6期966-980,共15页
A mesoscale torrential rainfall event that occurred over eastern China in June 2013 is analyzed by using observational data.The results show that a mesoscale convergence line and a weak convective cloud line formed ov... A mesoscale torrential rainfall event that occurred over eastern China in June 2013 is analyzed by using observational data.The results show that a mesoscale convergence line and a weak convective cloud line formed over the northern part of the Hangzhou Bay during the onset of the torrential rainfall event.A meso-vortex appeared over the confluence point of northeasterly flow associated with the Yellow-Sea high,easterly flow from rainfall area,and southeasterly flow from the Hangzhou Bay.The meso-vortex with a horizontal scale of 10-20 km lasted for about 1 h for stable surface circulations.The analysis of radar retrieval reveals that the meso-vortex in the boundary layer occurred at the south of strong radar echo.The formation of the meso-vortex turned to enhance convergence and cyclonic vorticity in the lower troposphere,which strengthened updrafts that are tilted into convective clouds and caused torrential rainfall.Thus,the occurrence of the meso-vortex in boundary layer is one of the mechanisms that are responsible for the enhancement of convective development. 展开更多
关键词 torrential rainfall triggering mechanism mesoscale analysis mesoscale disturbance vortex lower tropospheric convergence line
原文传递
Mesoscale Diagnosis of a Torrential Rainfall Caused by a Tropical Depression 被引量:2
20
作者 余晖 梁旭东 +1 位作者 端义宏 漆梁波 《Acta meteorologica Sinica》 SCIE 2005年第2期226-230,共5页
On August 5, 2001, Shanghai was struck by a torrential rainfall due to thepassage of a tropical depression (TD). The rainfall intensity has been the strongest in recent 50years. In this paper, a set of mesoscale re-an... On August 5, 2001, Shanghai was struck by a torrential rainfall due to thepassage of a tropical depression (TD). The rainfall intensity has been the strongest in recent 50years. In this paper, a set of mesoscale re-analyses data and the planetary boundary layerobservation from a wind profiler are used to understand the possible mechanism of such a heavy rain.Results show that the outburst of a southerly jet in the lower atmosphere triggered the explosivedevelopment of cyclonically vertical vorticity in the region with steep potential temperaturesurfaces in front of the TD; while the cyclonic vorticity increased notably at higher levels due tpthe small atmospheric vertical stability of westerly currents in the vicinity of Shanghai. Thesimultaneous sharp development of cyclonic vorticity at different levels should be the main causefor the torrential rainfall. 展开更多
关键词 tropical depression torrential rainfall moist potential vorticity
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部