Several simultaneous observations are presented of Syzygy effects during two solar eclipses, performed with torsinds and Foucault pendulums. The experiments/measurements were of a simple nature, conducted in several o...Several simultaneous observations are presented of Syzygy effects during two solar eclipses, performed with torsinds and Foucault pendulums. The experiments/measurements were of a simple nature, conducted in several of places in Romania and Ukraine. It is shown that during Syzygy effects both the torsind and the Foucault pendulum exhibit specific reactions: the torsind’s disk is rotated, whereas the direction of the swing plane, the period, the eccentricity and the chirality of the ellipse of oscillation of the Foucault pendulum are all altered. We term all these perturbations “Syzygy effects” and found that they take place even when the devices are in locations where the eclipse is not visible and even when they are underground. An unusual time shifts?between the responses of the devices and the maximum phase of the eclipse is detected. The importance of simultaneous simple observations of astronomical phenomena using these two devices of fundamentally different types is emphasized.展开更多
The description of a new device which is an improved version of the classic torsion balance is given. The device, which is the so-called “torsind”, seemed to be very sensitive to solar/lunar eclipses, and a Venus tr...The description of a new device which is an improved version of the classic torsion balance is given. The device, which is the so-called “torsind”, seemed to be very sensitive to solar/lunar eclipses, and a Venus transit. It even responded to a solar eclipse when installed underground. The results of the most well-documented cases are described.展开更多
The article reports on the results of an analysis of the torsind behavior long-term observations. The torsind is a species of ultralight disc torsion balance. The data analysis showed that the signal recorded contains...The article reports on the results of an analysis of the torsind behavior long-term observations. The torsind is a species of ultralight disc torsion balance. The data analysis showed that the signal recorded contains the 24-hour periodic component presumably associated with the Sun. Moreover, unpredictable strong impacts, forcing torsind disk to rotate in one or another direction, were revealed. Presumably the reason of these effects is the Sun. This indicates the existence of an unknown radiation that bears a torque which may impact on the mechanical systems dynamics. This fact leads to the need to measure the gravitational constant G overnight and during periods of minimum of the solar activity, provided that the G measurements are carried out using a torsion balance.展开更多
文摘Several simultaneous observations are presented of Syzygy effects during two solar eclipses, performed with torsinds and Foucault pendulums. The experiments/measurements were of a simple nature, conducted in several of places in Romania and Ukraine. It is shown that during Syzygy effects both the torsind and the Foucault pendulum exhibit specific reactions: the torsind’s disk is rotated, whereas the direction of the swing plane, the period, the eccentricity and the chirality of the ellipse of oscillation of the Foucault pendulum are all altered. We term all these perturbations “Syzygy effects” and found that they take place even when the devices are in locations where the eclipse is not visible and even when they are underground. An unusual time shifts?between the responses of the devices and the maximum phase of the eclipse is detected. The importance of simultaneous simple observations of astronomical phenomena using these two devices of fundamentally different types is emphasized.
文摘The description of a new device which is an improved version of the classic torsion balance is given. The device, which is the so-called “torsind”, seemed to be very sensitive to solar/lunar eclipses, and a Venus transit. It even responded to a solar eclipse when installed underground. The results of the most well-documented cases are described.
文摘The article reports on the results of an analysis of the torsind behavior long-term observations. The torsind is a species of ultralight disc torsion balance. The data analysis showed that the signal recorded contains the 24-hour periodic component presumably associated with the Sun. Moreover, unpredictable strong impacts, forcing torsind disk to rotate in one or another direction, were revealed. Presumably the reason of these effects is the Sun. This indicates the existence of an unknown radiation that bears a torque which may impact on the mechanical systems dynamics. This fact leads to the need to measure the gravitational constant G overnight and during periods of minimum of the solar activity, provided that the G measurements are carried out using a torsion balance.