We propose a high-sensitivity bidirectional torsion sensor using a helical seven-core fiber taper embedded in multimode fiber(MHSTM).Sensors with different taper waists and helical pitches are fabricated,and their tra...We propose a high-sensitivity bidirectional torsion sensor using a helical seven-core fiber taper embedded in multimode fiber(MHSTM).Sensors with different taper waists and helical pitches are fabricated,and their transmission spectra are obtained and analyzed.The waist and length of the sandwiched seven-core fiber are finally determined to be 68 μm and3 mm,respectively.The experimental results show that the clockwise and counterclockwise torsion sensitivities of the proposed sensor are 2.253 nm/(rad/m) and-1.123 nm/(rad/m),respectively.When tapered waist diameter reduces to48 μm,a superior torsion sensitivity of 5.391 nm/(rad/m) in the range of 0-4.24 nm/(rad/m) is obtained,which is 46 times as large as the traditional helical seven-core fiber structure.In addition,the MHSTM structure is also relatively stable to temperature variations.展开更多
We propose and investigate a compact optical fiber sensor that aims to measure the torsion in both amount and direction with high sensitivity.This sensor is configured by a triangular-prism-shaped long-period fiber gr...We propose and investigate a compact optical fiber sensor that aims to measure the torsion in both amount and direction with high sensitivity.This sensor is configured by a triangular-prism-shaped long-period fiber grating,which is fabricated by the high frequency CO_(2) laser polished method.The unique design of the triangular-shaped structure breaks the rotational symmetry of the optical fiber and provides high sensitivity for torsion measurement.In preliminary experiments,the torsion response of the sensor achieves a good stability and linearity.The torsion sensitivity is 0.54 nm/(rad/m),which renders the proposed structure a highly sensitive torsion sensor.展开更多
An interrogation sensor system combining the "figure-of-eight" fiber loop mirror using a single directional 3×3 fiber optic coupler was proposed. One fiber loop mirror was formed by inserting a length of high b...An interrogation sensor system combining the "figure-of-eight" fiber loop mirror using a single directional 3×3 fiber optic coupler was proposed. One fiber loop mirror was formed by inserting a length of high birefringent optical fiber at the input ports of the 3×3 coupler. Splicing the output ports of the 3×3 coupler between them created the other fiber loop mirror. The introduction of this second loop gave rise to two polarization states of light with the same frequency but different optical phase. The mechanical torsion sensing head was located at the second loop and was exhibited an average modulus torsion sensitivity of 7.9×10^-4 degree/dB. The performance of the sensor was not affected by environmental temperature variations. Keywords: Torsion sensor, fiber loop mirror, interferometer展开更多
基金supported in part by the Joint Research Fund in Astronomy under Cooperative Agreement between the National Natural Science Foundation of China(NSFC) and the Chinese Academy of Sciences(CAS)(Nos.U2031132 and U2031130)the National Natural Science Foundation of China(No.12103015)the Fundamental Research Funds for the Central Universities to the Harbin Engineering University。
文摘We propose a high-sensitivity bidirectional torsion sensor using a helical seven-core fiber taper embedded in multimode fiber(MHSTM).Sensors with different taper waists and helical pitches are fabricated,and their transmission spectra are obtained and analyzed.The waist and length of the sandwiched seven-core fiber are finally determined to be 68 μm and3 mm,respectively.The experimental results show that the clockwise and counterclockwise torsion sensitivities of the proposed sensor are 2.253 nm/(rad/m) and-1.123 nm/(rad/m),respectively.When tapered waist diameter reduces to48 μm,a superior torsion sensitivity of 5.391 nm/(rad/m) in the range of 0-4.24 nm/(rad/m) is obtained,which is 46 times as large as the traditional helical seven-core fiber structure.In addition,the MHSTM structure is also relatively stable to temperature variations.
基金supported by the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China(NSFC)and Chinese Academy of Sciences(CAS)(Nos.U1831115,U1631239,and U1931206)the Dean Project of Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing(No.GXKL06190106)the Key Projects of Natural Science Foundation of Heilongjiang Province(No.ZD2019H003)。
文摘We propose and investigate a compact optical fiber sensor that aims to measure the torsion in both amount and direction with high sensitivity.This sensor is configured by a triangular-prism-shaped long-period fiber grating,which is fabricated by the high frequency CO_(2) laser polished method.The unique design of the triangular-shaped structure breaks the rotational symmetry of the optical fiber and provides high sensitivity for torsion measurement.In preliminary experiments,the torsion response of the sensor achieves a good stability and linearity.The torsion sensitivity is 0.54 nm/(rad/m),which renders the proposed structure a highly sensitive torsion sensor.
文摘An interrogation sensor system combining the "figure-of-eight" fiber loop mirror using a single directional 3×3 fiber optic coupler was proposed. One fiber loop mirror was formed by inserting a length of high birefringent optical fiber at the input ports of the 3×3 coupler. Splicing the output ports of the 3×3 coupler between them created the other fiber loop mirror. The introduction of this second loop gave rise to two polarization states of light with the same frequency but different optical phase. The mechanical torsion sensing head was located at the second loop and was exhibited an average modulus torsion sensitivity of 7.9×10^-4 degree/dB. The performance of the sensor was not affected by environmental temperature variations. Keywords: Torsion sensor, fiber loop mirror, interferometer