The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to ...The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer.展开更多
Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current...Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.展开更多
Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific d...Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific discovery approach.The total ionizing dose(TID)effects usually cause gain degradation of bipolar junction transistors(BJTs),leading to functional failures of bipolar integrated circuits.Currently,many experiments of TID effects on BJTs have been conducted at different laboratories worldwide,producing a large amount of experimental data which provides a wealth of information.However,it is difficult to utilize these data effectively.In this study,we proposed a new artificial neural network(ANN)approach to analyze the experimental data of TID effects on BJTs An ANN model was built and trained using data collected from different experiments.The results indicate that the proposed ANN model has advantages in capturing nonlinear correlations and predicting the data.The trained ANN model suggests that the TID hardness of a BJT tends to increase with base current I.A possible cause for this finding was analyzed and confirmed through irradiation experiments.展开更多
The synergistic effect of total ionizing dose(TID) on single event effect(SEE) in SiGe heterojunction bipolar transistor(HBT) is investigated in a series of experiments. The SiGe HBTs after being exposed to 60 C...The synergistic effect of total ionizing dose(TID) on single event effect(SEE) in SiGe heterojunction bipolar transistor(HBT) is investigated in a series of experiments. The SiGe HBTs after being exposed to 60 Co g irradiation are struck by pulsed laser to simulate SEE. The SEE transient currents and collected charges of the un-irradiated device are compared with those of the devices which are irradiated at high and low dose rate with various biases. The results show that the SEE damage to un-irradiated device is more serious than that to irradiated SiGe HBT at a low applied voltage of laser test. In addition, the g irradiations at forward and all-grounded bias have an obvious influence on SEE in the SiGe HBT, but the synergistic effect after cutting off the g irradiation is not significant. The influence of positive oxide-trap charges induced by TID on the distortion of electric field in SEE is the major factor of the synergistic effect. Moreover, the recombination of interface traps also plays a role in charge collection.展开更多
The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static p...The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static parameters,and the dynamic parameters caused by the TID and EMI separately and synergistically is presented.The experimental results demonstrate that the increase in TID intensifies data error and the signal-tonoise ratio(SNR)degradation caused by radiated EMI.The cumulative distribution function of EMI failure with respect to data error and SNR with different TIDs was extracted.The decreasing trend of the threshold was acquired with a small sample size of five for each TID group.The result indicates that the ADC is more sensitive in a compound radiation environment.展开更多
Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrie...Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrier effect (HCE) has also been proven to be very weak. In this paper, the reason why the annular gate nMOSFETs have good TID but bad HCE resistance is discussed in detail, and an improved design to locate the source contacts only along one side of the annular gate is used to weaken the HCE degradation. The good TID and HCE hardened capability of the design are verified by the experiments for I/O and core nMOSFETs in a 0.18 μm bulk CMOS technology. In addition, the shortcoming of this design is also discussed and the TID and the HCE characteristics of the replacers (the annular source nMOSFETs) are also studied to provide a possible alternative for the designers.展开更多
The influence of characteristics’ measurement sequence on total ionizing dose effect in partially-depleted SOI nMOSFET is comprehensively studied. We find that measuring the front-gate curves has no influence on tota...The influence of characteristics’ measurement sequence on total ionizing dose effect in partially-depleted SOI nMOSFET is comprehensively studied. We find that measuring the front-gate curves has no influence on total ionizing dose effect.However, the back-gate curves’ measurement has a great influence on total ionizing dose effect due to high electric field in the buried oxide during measuring. In this paper, we analyze their mechanisms and we find that there are three kinds of electrons tunneling mechanisms at the bottom corner of the shallow trench isolation and in the buried oxide during the backgate curves’ measurement, which are: Fowler–Nordheim tunneling, trap-assisted tunneling, and charge-assisted tunneling.The tunneling electrons neutralize the radiation-induced positive trapped charges, which weakens the total ionizing dose effect. As the total ionizing dose level increases, the charge-assisted tunneling is enhanced by the radiation-induced positive trapped charges. Hence, the influence of the back-gate curves’ measurement is enhanced as the total ionizing dose level increases. Different irradiation biases are compared with each other. An appropriate measurement sequence and voltage bias are proposed to eliminate the influence of measurement.展开更多
The influences of total ionizing dose (TID) on the single event effect (SEE) sensitivity of 34-nm and 25-nm NAND flash memories are investigated in this paper. The increase in the cross section of heavy-ion single...The influences of total ionizing dose (TID) on the single event effect (SEE) sensitivity of 34-nm and 25-nm NAND flash memories are investigated in this paper. The increase in the cross section of heavy-ion single event upset (SEU) in memories that have ever been exposed to TID is observed, which is attributed to the combination of the threshold voltage shifts induced by 7-rays and heavy ions. Retention errors in floating gate (FG) cells after heavy ion irradiation are observed. Moreover, the cross section of retention error increases if the memory has ever been exposed to TID. This effect is more evident at a low linear energy transfer (LET) value. The underlying mechanism is identified as the combination of the defects induced by 7-rays and heavy ions, which increases the possibility to constitute a multi-trap assisted tunneling (m- TAT) path across the tunnel oxide.展开更多
Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we obser...Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we observed a larger increase of off-state leakage in the short channel device than in long one. However, a larger threshold voltage shift is observed for the narrow width device than for the wide one, which is well known as the radiation induced narrow channel effect. The radiation induced charge in the shallow trench isolation oxide influences the electric field of the narrow channel device. Also, the drain bias dependence of the off-state leakage after irradiation is observed, which is called the radiation enhanced drain induced barrier lowing effect. Finally, we found that substrate bias voltage can suppress the off-state leakage, while leading to more obvious hump effect.展开更多
The total ionizing dose radiation effects in the polycrystalline silicon thin film transistors are studied. Transfer characteristics, high-frequency capacitance-voltage curves and low-frequency noises (LFN) are measur...The total ionizing dose radiation effects in the polycrystalline silicon thin film transistors are studied. Transfer characteristics, high-frequency capacitance-voltage curves and low-frequency noises (LFN) are measured before and after radiation. The experimental results show that threshold voltage and hole-field-effect mobility decrease, while sub-threshold swing and low-frequency noise increase with the increase of the total dose. The contributions of radiation induced interface states and oxide trapped charges to the shift of threshold voltage are also estimated. Furthermore, spatial distributions of oxide trapped charges before and after radiation are extracted based on the LFN measurements.展开更多
On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- s...On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.展开更多
Total ionizing dose induced single transistor latchup effects for 130 nm partially depleted silicon-on-insulator (PDSOI) NMOSFETs with the bodies floating were studied in this work. The latchup phenomenon strongly c...Total ionizing dose induced single transistor latchup effects for 130 nm partially depleted silicon-on-insulator (PDSOI) NMOSFETs with the bodies floating were studied in this work. The latchup phenomenon strongly correlates with the bias configuration during irradiation. It is found that the high body doping concentration can make the devices less sensitive to the single transistor latchup effect, and the onset drain voltage at which latchup occurs can degrade as the total dose level rises. The mechanism of band-to-band tunneling (BBT) has been discussed. Two-dimensional simulations were conducted to evaluate the BBT effect. It is demonstrated that BBT combined with the positive trapped charge in the buried oxide (BOX) contributes a lot to the latchup effect.展开更多
Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/...Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/Al2O3(AHA) high-k gate stack structure under in-situ 10 keV x-rays are studied. The C-V characteristics at different radiation doses demonstrate that charge stored in the device continues to be leaked away during the irradiation,thereby inducing the shift of flat band voltage(V(fb)). The dc memory window shows insignificant changes, suggesting the existence of good P/E ability. Furthermore, the physical mechanisms of TID induced radiation damages in AHA-based CTM are analyzed.展开更多
The 1-Mb and 4-Mb commercial toggle magnetoresistive random-access memories(MRAMs) with 0.13 μm and 0.18-μm complementary metal–oxide–semiconductor(CMOS) process respectively and different magnetic tunneling j...The 1-Mb and 4-Mb commercial toggle magnetoresistive random-access memories(MRAMs) with 0.13 μm and 0.18-μm complementary metal–oxide–semiconductor(CMOS) process respectively and different magnetic tunneling junctions(MTJs) are irradiated with a Cobalt-60 gamma source. The electrical functions of devices during the irradiation and the room temperature annealing behavior are measured. Electrical failures are observed until the dose accumulates to 120-krad(Si) in 4-Mb MRAM while the 1-Mb MRAM keeps normal. Thus, the 0.13-μm process circuit exhibits better radiation tolerance than the 0.18-μm process circuit. However, a small quantity of read bit-errors randomly occurs only in 1-Mb MRAM during the irradiation while their electrical function is normal. It indicates that the store states of MTJ may be influenced by gamma radiation, although the electrical transport and magnetic properties are inherently immune to the radiation. We propose that the magnetic Compton scattering in the interaction of gamma ray with magnetic free layer may be the origin of the read bit-errors. Our results are useful for MRAM toward space application.展开更多
A model of the operational amplifier based on VHDL-AMS is proposed. According to needs of simulating the total ionizing dose(TID) radiation effect, parameters of operational amplifier are taken into account when the p...A model of the operational amplifier based on VHDL-AMS is proposed. According to needs of simulating the total ionizing dose(TID) radiation effect, parameters of operational amplifier are taken into account when the performance is specified. The operational amplifier model used for the TID radiation effect simulation is completed after verifying each modeled parameter. And a parameter for describing the external environment is introduced to make the model combined with TID. Finally, an example is used to illustrate the TID effect on the operational amplifier of MC14573, proving the validity of the model.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12004329)Open Project of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(Grant No.SKLIPR2115)+1 种基金Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.SJCX22_1704)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University,China(Grant Nos.YZ202026301 and YZ202026306)。
文摘The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer.
文摘Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.
基金supported by the National Natural Science Foundation of China (Nos. 11690040 and 11690043)。
文摘Machine learning methods have proven to be powerful in various research fields.In this paper,we show that research on radiation effects could benefit from such methods and present a machine learning-based scientific discovery approach.The total ionizing dose(TID)effects usually cause gain degradation of bipolar junction transistors(BJTs),leading to functional failures of bipolar integrated circuits.Currently,many experiments of TID effects on BJTs have been conducted at different laboratories worldwide,producing a large amount of experimental data which provides a wealth of information.However,it is difficult to utilize these data effectively.In this study,we proposed a new artificial neural network(ANN)approach to analyze the experimental data of TID effects on BJTs An ANN model was built and trained using data collected from different experiments.The results indicate that the proposed ANN model has advantages in capturing nonlinear correlations and predicting the data.The trained ANN model suggests that the TID hardness of a BJT tends to increase with base current I.A possible cause for this finding was analyzed and confirmed through irradiation experiments.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61704127 and 61574171)the Fundamental Research Funds for the Central Universities,China(Grant No.XJS17067)
文摘The synergistic effect of total ionizing dose(TID) on single event effect(SEE) in SiGe heterojunction bipolar transistor(HBT) is investigated in a series of experiments. The SiGe HBTs after being exposed to 60 Co g irradiation are struck by pulsed laser to simulate SEE. The SEE transient currents and collected charges of the un-irradiated device are compared with those of the devices which are irradiated at high and low dose rate with various biases. The results show that the SEE damage to un-irradiated device is more serious than that to irradiated SiGe HBT at a low applied voltage of laser test. In addition, the g irradiations at forward and all-grounded bias have an obvious influence on SEE in the SiGe HBT, but the synergistic effect after cutting off the g irradiation is not significant. The influence of positive oxide-trap charges induced by TID on the distortion of electric field in SEE is the major factor of the synergistic effect. Moreover, the recombination of interface traps also plays a role in charge collection.
文摘The influence of combined total ionization dose(TID)and radiated electromagnetic interference(EMI)in a commercial analog-to-digital converter(ADC)was studied.The degradation of the direct-current response,the static parameters,and the dynamic parameters caused by the TID and EMI separately and synergistically is presented.The experimental results demonstrate that the increase in TID intensifies data error and the signal-tonoise ratio(SNR)degradation caused by radiated EMI.The cumulative distribution function of EMI failure with respect to data error and SNR with different TIDs was extracted.The decreasing trend of the threshold was acquired with a small sample size of five for each TID group.The result indicates that the ADC is more sensitive in a compound radiation environment.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.60836004)the National Natural Science Foundation of China(Grant Nos.61006070 and 61076025)
文摘Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrier effect (HCE) has also been proven to be very weak. In this paper, the reason why the annular gate nMOSFETs have good TID but bad HCE resistance is discussed in detail, and an improved design to locate the source contacts only along one side of the annular gate is used to weaken the HCE degradation. The good TID and HCE hardened capability of the design are verified by the experiments for I/O and core nMOSFETs in a 0.18 μm bulk CMOS technology. In addition, the shortcoming of this design is also discussed and the TID and the HCE characteristics of the replacers (the annular source nMOSFETs) are also studied to provide a possible alternative for the designers.
文摘The influence of characteristics’ measurement sequence on total ionizing dose effect in partially-depleted SOI nMOSFET is comprehensively studied. We find that measuring the front-gate curves has no influence on total ionizing dose effect.However, the back-gate curves’ measurement has a great influence on total ionizing dose effect due to high electric field in the buried oxide during measuring. In this paper, we analyze their mechanisms and we find that there are three kinds of electrons tunneling mechanisms at the bottom corner of the shallow trench isolation and in the buried oxide during the backgate curves’ measurement, which are: Fowler–Nordheim tunneling, trap-assisted tunneling, and charge-assisted tunneling.The tunneling electrons neutralize the radiation-induced positive trapped charges, which weakens the total ionizing dose effect. As the total ionizing dose level increases, the charge-assisted tunneling is enhanced by the radiation-induced positive trapped charges. Hence, the influence of the back-gate curves’ measurement is enhanced as the total ionizing dose level increases. Different irradiation biases are compared with each other. An appropriate measurement sequence and voltage bias are proposed to eliminate the influence of measurement.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11690041,11675233,U1532261,and 11505243)
文摘The influences of total ionizing dose (TID) on the single event effect (SEE) sensitivity of 34-nm and 25-nm NAND flash memories are investigated in this paper. The increase in the cross section of heavy-ion single event upset (SEU) in memories that have ever been exposed to TID is observed, which is attributed to the combination of the threshold voltage shifts induced by 7-rays and heavy ions. Retention errors in floating gate (FG) cells after heavy ion irradiation are observed. Moreover, the cross section of retention error increases if the memory has ever been exposed to TID. This effect is more evident at a low linear energy transfer (LET) value. The underlying mechanism is identified as the combination of the defects induced by 7-rays and heavy ions, which increases the possibility to constitute a multi-trap assisted tunneling (m- TAT) path across the tunnel oxide.
文摘Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we observed a larger increase of off-state leakage in the short channel device than in long one. However, a larger threshold voltage shift is observed for the narrow width device than for the wide one, which is well known as the radiation induced narrow channel effect. The radiation induced charge in the shallow trench isolation oxide influences the electric field of the narrow channel device. Also, the drain bias dependence of the off-state leakage after irradiation is observed, which is called the radiation enhanced drain induced barrier lowing effect. Finally, we found that substrate bias voltage can suppress the off-state leakage, while leading to more obvious hump effect.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61574048 and 61204112the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2014A030313656the Pearl River S&T Nova Program of Guangzhou
文摘The total ionizing dose radiation effects in the polycrystalline silicon thin film transistors are studied. Transfer characteristics, high-frequency capacitance-voltage curves and low-frequency noises (LFN) are measured before and after radiation. The experimental results show that threshold voltage and hole-field-effect mobility decrease, while sub-threshold swing and low-frequency noise increase with the increase of the total dose. The contributions of radiation induced interface states and oxide trapped charges to the shift of threshold voltage are also estimated. Furthermore, spatial distributions of oxide trapped charges before and after radiation are extracted based on the LFN measurements.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61404151 and 61574153
文摘On the basis of a detailed discussion of the development of total ionizing dose (TID) effect model, a new commercial-model-independent TID modeling approach for partially depleted silicon-on-insulator metal-oxide- semiconductor field effect transistors is developed. An exponential approximation is proposed to simplify the trap charge calculation. Irradiation experiments with 60Co gamma rays for IO and core devices are performed to validate the simulation results. An excellent agreement of measurement with the simulation results is observed.
基金Project supported by Shanghai Municipal Natural Science Foundation,China(Grant No.15ZR1447100)
文摘Total ionizing dose induced single transistor latchup effects for 130 nm partially depleted silicon-on-insulator (PDSOI) NMOSFETs with the bodies floating were studied in this work. The latchup phenomenon strongly correlates with the bias configuration during irradiation. It is found that the high body doping concentration can make the devices less sensitive to the single transistor latchup effect, and the onset drain voltage at which latchup occurs can degrade as the total dose level rises. The mechanism of band-to-band tunneling (BBT) has been discussed. Two-dimensional simulations were conducted to evaluate the BBT effect. It is demonstrated that BBT combined with the positive trapped charge in the buried oxide (BOX) contributes a lot to the latchup effect.
基金Supported by the National Natural Science Foundation of China under Grant No 616340084the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2014101+1 种基金the International Cooperation Project of Chinese Academy of Sciencesthe Austrian-Chinese Cooperative R&D Projects under Grant No 172511KYSB20150006
文摘Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/Al2O3(AHA) high-k gate stack structure under in-situ 10 keV x-rays are studied. The C-V characteristics at different radiation doses demonstrate that charge stored in the device continues to be leaked away during the irradiation,thereby inducing the shift of flat band voltage(V(fb)). The dc memory window shows insignificant changes, suggesting the existence of good P/E ability. Furthermore, the physical mechanisms of TID induced radiation damages in AHA-based CTM are analyzed.
基金supported by the National Natural Science Foundation of China(Grant No.61404161)
文摘The 1-Mb and 4-Mb commercial toggle magnetoresistive random-access memories(MRAMs) with 0.13 μm and 0.18-μm complementary metal–oxide–semiconductor(CMOS) process respectively and different magnetic tunneling junctions(MTJs) are irradiated with a Cobalt-60 gamma source. The electrical functions of devices during the irradiation and the room temperature annealing behavior are measured. Electrical failures are observed until the dose accumulates to 120-krad(Si) in 4-Mb MRAM while the 1-Mb MRAM keeps normal. Thus, the 0.13-μm process circuit exhibits better radiation tolerance than the 0.18-μm process circuit. However, a small quantity of read bit-errors randomly occurs only in 1-Mb MRAM during the irradiation while their electrical function is normal. It indicates that the store states of MTJ may be influenced by gamma radiation, although the electrical transport and magnetic properties are inherently immune to the radiation. We propose that the magnetic Compton scattering in the interaction of gamma ray with magnetic free layer may be the origin of the read bit-errors. Our results are useful for MRAM toward space application.
基金supported by the National Natural Science Foundation of China (No. 61303034)Aeronautical Science Foundation of China (No. 2013ZD31007)
文摘A model of the operational amplifier based on VHDL-AMS is proposed. According to needs of simulating the total ionizing dose(TID) radiation effect, parameters of operational amplifier are taken into account when the performance is specified. The operational amplifier model used for the TID radiation effect simulation is completed after verifying each modeled parameter. And a parameter for describing the external environment is introduced to make the model combined with TID. Finally, an example is used to illustrate the TID effect on the operational amplifier of MC14573, proving the validity of the model.