The solution of the grey model(GM(1,1)model)generally involves equal-precision observations,and the(co)variance matrix is established from the prior information.However,the data are generally available with unequal-pr...The solution of the grey model(GM(1,1)model)generally involves equal-precision observations,and the(co)variance matrix is established from the prior information.However,the data are generally available with unequal-precision measurements in reality.To deal with the errors of all observations for GM(1,1)model with errors-in-variables(EIV)structure,we exploit the total least-squares(TLS)algorithm to estimate the parameters of GM(1,1)model in this paper.Ignoring that the effect of the improper prior stochastic model and the homologous observations may degrade the accuracy of parameter estimation,we further present a nonlinear total least-squares variance component estimation approach for GM(1,1)model,which resorts to the minimum norm quadratic unbiased estimation(MINQUE).The practical and simulative experiments indicate that the presented approach has significant merits in improving the predictive accuracy in comparison with control methods.展开更多
A novel algorithm for source location by utilizing the time difference of arrival (TDOA) measurements of a signal received at spatially separated sensors is proposed. The algorithm is based on quadratic constraint tot...A novel algorithm for source location by utilizing the time difference of arrival (TDOA) measurements of a signal received at spatially separated sensors is proposed. The algorithm is based on quadratic constraint total least-squares (QC-TLS) method and gives an explicit solution. The total least-squares method is a generalized data fitting method that is appropriate for cases when the system model contains error or is not known exactly, and quadratic constraint, which could be realized via Lagrange multipliers technique, could constrain the solution to the location equations to improve location accuracy. Comparisons of performance with ordinary least-squares are made, and Monte Carlo simulations are performed. Simulation results indicate that the proposed algorithm has high location accuracy and achieves accuracy close to the Cramer-Rao lower bound (CRLB) near the small TDOA measurement error region.展开更多
In classical regression analysis, the error of independent variable is usually not taken into account in regression analysis. This paper presents two solution methods for the case that both the independent and the dep...In classical regression analysis, the error of independent variable is usually not taken into account in regression analysis. This paper presents two solution methods for the case that both the independent and the dependent variables have errors. These methods are derived from the condition-adjustment and indirect-adjustment models based on the Total-Least-Squares principle. The equivalence of these two methods is also proven in theory.展开更多
提出了一种到达时间(time of arrival,TOA)模式下总体最小二乘(total least square,TLS)辅助泰勒级数展开的蜂窝定位新算法。该算法针对泰勒级数展开对初始迭代参考点依赖性强的问题,综合考虑观测量误差和观测站位置误差,利用TLS估计初...提出了一种到达时间(time of arrival,TOA)模式下总体最小二乘(total least square,TLS)辅助泰勒级数展开的蜂窝定位新算法。该算法针对泰勒级数展开对初始迭代参考点依赖性强的问题,综合考虑观测量误差和观测站位置误差,利用TLS估计初始参考点,然后在估计值处对观测方程组实施泰勒级数展开,并使用加权最小二乘进行多次迭代运算,实现对移动终端的高精度定位。仿真结果表明,该算法在平均迭代次数和定位精度方面具有接近基于真实位置的泰勒级数展开算法的性能,并且在不同的几何精度因子(geometrical dilution ofprecision,GDOP)下,均具备良好的抗观测量误差和观测站位置误差的特性。展开更多
对于电能质量扰动检测和定位中振荡瞬态的检测、识别,目前普遍采用的是时频特征矢量提取和智能模式识别方法,此类方法无法准确提取电能质量振荡瞬态信号不同频率分量的组成。结合模极大值小波域和总体最小二乘法旋转不变技术的信号参数...对于电能质量扰动检测和定位中振荡瞬态的检测、识别,目前普遍采用的是时频特征矢量提取和智能模式识别方法,此类方法无法准确提取电能质量振荡瞬态信号不同频率分量的组成。结合模极大值小波域和总体最小二乘法旋转不变技术的信号参数估计(total least squares-estimation of signal parameters via rotational invariancete chniques,TLS-ESPRIT)可以很好地实现振荡信号的检测与识别。对于输入信号,首先采用模极大值小波域检测振荡发生的起始时刻和终止时刻,然后利用振荡时间间隔内的信号建立观测空间矩阵,通过奇异值分解和总体最小二乘法实现特征值截尾,将采样信号观测空间分解为信号子空间和噪声子空间,得到振荡信号每个构成频率分量的相应参数。仿真结果证实了所提出方法的可行性。展开更多
针对室内WiFi和蓝牙单独定位时定位精度较低的问题,提出基于多属性代价函数的WiFi与蓝牙总体最小二乘(TLS)融合定位算法。为减小接收信号强度指示(RSSI)值不稳定的信标节点造成的测距误差,采用WiFi/蓝牙多属性代价函数综合评估信标定位...针对室内WiFi和蓝牙单独定位时定位精度较低的问题,提出基于多属性代价函数的WiFi与蓝牙总体最小二乘(TLS)融合定位算法。为减小接收信号强度指示(RSSI)值不稳定的信标节点造成的测距误差,采用WiFi/蓝牙多属性代价函数综合评估信标定位性能,优选出最佳信标节点参与融合定位。在定位解算中,同时考虑测距误差和信标节点部署误差。采用TLS算法对待定位节点进行最优位置估计,进一步提高定位精度。实验仿真结果表明:在RSSI噪声标准差为3 d Bm的条件下,算法定位精度优于1.9 m的概率可达95%,相比单独定位抗噪性能明显提高且定位误差显著降低。展开更多
针对外辐射源雷达中,传统基于压缩感知(compressed sensing,CS)的超分辨波达方向(direction of arriving,DOA)估计方法在阵列天线存在幅相误差时测角精度差和目标分辨性能低的问题,提出一种基于总体最小二乘(total least squares,TLS)-C...针对外辐射源雷达中,传统基于压缩感知(compressed sensing,CS)的超分辨波达方向(direction of arriving,DOA)估计方法在阵列天线存在幅相误差时测角精度差和目标分辨性能低的问题,提出一种基于总体最小二乘(total least squares,TLS)-CS的超分辨DOA估计方法。首先,通过奇异值分解方法求解TLS信号模型来修正阵列天线的幅相误差;然后利用贪婪迭代追踪算法进行CS稀疏重构得到目标的方位信息。仿真分析表明,当阵列天线存在幅相误差时,本文所提方法具有良好的超分辨DOA估计性能。展开更多
基于几何绕射理论(geometrical theory of diffraction,GTD)的散射中心信号模型可以精确描述隐身目标电磁散射特性,将总体最小二乘旋转矢量不变技术(total least squares-estimating signal parameter via rotational invariance techni...基于几何绕射理论(geometrical theory of diffraction,GTD)的散射中心信号模型可以精确描述隐身目标电磁散射特性,将总体最小二乘旋转矢量不变技术(total least squares-estimating signal parameter via rotational invariance techniques,TLS-ESPRIT)算法引入此模型中,为散射中心提取提供了超分辨率算法。针对TLS-ESPRIT算法在低信噪比条件下估计精度不高的问题,引入Hankel矩阵改进TLS-ESPRIT算法对回波数据处理的过程,改进后的算法提高了在低信噪比情况下对散射中心参数估计的精度,具有更好的噪声鲁棒性。在对目标的识别以及雷达散射截面(radar cross section,RCS)重构方面具有重要意义。展开更多
基金supported by the National Natural Science Foundation of China(No.41874001 and No.41664001)Support Program for Outstanding Youth Talents in Jiangxi Province(No.20162BCB23050)National Key Research and Development Program(No.2016YFB0501405)。
文摘The solution of the grey model(GM(1,1)model)generally involves equal-precision observations,and the(co)variance matrix is established from the prior information.However,the data are generally available with unequal-precision measurements in reality.To deal with the errors of all observations for GM(1,1)model with errors-in-variables(EIV)structure,we exploit the total least-squares(TLS)algorithm to estimate the parameters of GM(1,1)model in this paper.Ignoring that the effect of the improper prior stochastic model and the homologous observations may degrade the accuracy of parameter estimation,we further present a nonlinear total least-squares variance component estimation approach for GM(1,1)model,which resorts to the minimum norm quadratic unbiased estimation(MINQUE).The practical and simulative experiments indicate that the presented approach has significant merits in improving the predictive accuracy in comparison with control methods.
文摘A novel algorithm for source location by utilizing the time difference of arrival (TDOA) measurements of a signal received at spatially separated sensors is proposed. The algorithm is based on quadratic constraint total least-squares (QC-TLS) method and gives an explicit solution. The total least-squares method is a generalized data fitting method that is appropriate for cases when the system model contains error or is not known exactly, and quadratic constraint, which could be realized via Lagrange multipliers technique, could constrain the solution to the location equations to improve location accuracy. Comparisons of performance with ordinary least-squares are made, and Monte Carlo simulations are performed. Simulation results indicate that the proposed algorithm has high location accuracy and achieves accuracy close to the Cramer-Rao lower bound (CRLB) near the small TDOA measurement error region.
基金supported by the National Nature Science Foundation of China (41174009)
文摘In classical regression analysis, the error of independent variable is usually not taken into account in regression analysis. This paper presents two solution methods for the case that both the independent and the dependent variables have errors. These methods are derived from the condition-adjustment and indirect-adjustment models based on the Total-Least-Squares principle. The equivalence of these two methods is also proven in theory.
文摘提出了一种到达时间(time of arrival,TOA)模式下总体最小二乘(total least square,TLS)辅助泰勒级数展开的蜂窝定位新算法。该算法针对泰勒级数展开对初始迭代参考点依赖性强的问题,综合考虑观测量误差和观测站位置误差,利用TLS估计初始参考点,然后在估计值处对观测方程组实施泰勒级数展开,并使用加权最小二乘进行多次迭代运算,实现对移动终端的高精度定位。仿真结果表明,该算法在平均迭代次数和定位精度方面具有接近基于真实位置的泰勒级数展开算法的性能,并且在不同的几何精度因子(geometrical dilution ofprecision,GDOP)下,均具备良好的抗观测量误差和观测站位置误差的特性。
文摘对于电能质量扰动检测和定位中振荡瞬态的检测、识别,目前普遍采用的是时频特征矢量提取和智能模式识别方法,此类方法无法准确提取电能质量振荡瞬态信号不同频率分量的组成。结合模极大值小波域和总体最小二乘法旋转不变技术的信号参数估计(total least squares-estimation of signal parameters via rotational invariancete chniques,TLS-ESPRIT)可以很好地实现振荡信号的检测与识别。对于输入信号,首先采用模极大值小波域检测振荡发生的起始时刻和终止时刻,然后利用振荡时间间隔内的信号建立观测空间矩阵,通过奇异值分解和总体最小二乘法实现特征值截尾,将采样信号观测空间分解为信号子空间和噪声子空间,得到振荡信号每个构成频率分量的相应参数。仿真结果证实了所提出方法的可行性。
文摘针对室内WiFi和蓝牙单独定位时定位精度较低的问题,提出基于多属性代价函数的WiFi与蓝牙总体最小二乘(TLS)融合定位算法。为减小接收信号强度指示(RSSI)值不稳定的信标节点造成的测距误差,采用WiFi/蓝牙多属性代价函数综合评估信标定位性能,优选出最佳信标节点参与融合定位。在定位解算中,同时考虑测距误差和信标节点部署误差。采用TLS算法对待定位节点进行最优位置估计,进一步提高定位精度。实验仿真结果表明:在RSSI噪声标准差为3 d Bm的条件下,算法定位精度优于1.9 m的概率可达95%,相比单独定位抗噪性能明显提高且定位误差显著降低。
文摘针对外辐射源雷达中,传统基于压缩感知(compressed sensing,CS)的超分辨波达方向(direction of arriving,DOA)估计方法在阵列天线存在幅相误差时测角精度差和目标分辨性能低的问题,提出一种基于总体最小二乘(total least squares,TLS)-CS的超分辨DOA估计方法。首先,通过奇异值分解方法求解TLS信号模型来修正阵列天线的幅相误差;然后利用贪婪迭代追踪算法进行CS稀疏重构得到目标的方位信息。仿真分析表明,当阵列天线存在幅相误差时,本文所提方法具有良好的超分辨DOA估计性能。
文摘基于几何绕射理论(geometrical theory of diffraction,GTD)的散射中心信号模型可以精确描述隐身目标电磁散射特性,将总体最小二乘旋转矢量不变技术(total least squares-estimating signal parameter via rotational invariance techniques,TLS-ESPRIT)算法引入此模型中,为散射中心提取提供了超分辨率算法。针对TLS-ESPRIT算法在低信噪比条件下估计精度不高的问题,引入Hankel矩阵改进TLS-ESPRIT算法对回波数据处理的过程,改进后的算法提高了在低信噪比情况下对散射中心参数估计的精度,具有更好的噪声鲁棒性。在对目标的识别以及雷达散射截面(radar cross section,RCS)重构方面具有重要意义。