Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control ...Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area.展开更多
Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport....Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport. By incorporating these counteracting driving forces in a phase-averaged manner, the theoretically-based quasi-steady formula of Wang (2007) is modified to predict the magnitude and direction of net cross-shore total load transport under the coaction of wave and current. The predictions show an excellent agreement with the measurement data on medium and fine sand collected by Dohmen-Janssen and Hanes (2002) and Schretlen (2012) in a full-scale wave flume at the Coastal Research Centre in Hannover, Germany. The modified formula can predict the net onshore transport of fine sand in sheet flows. In particular, it can predict the net offshore transport of medium sand in rippled beds through enlarged bed roughness, as well as the net offshore transport of fine-to-coarse sand in sheet flows with the aid of a new criterion to judge the occurrence of net offshore transport.展开更多
Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the probl...Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.展开更多
Rock-soil interface mixed ground(RSI)is often encountered in tunnel construction.The excavation loads of tunnel boring machines(TBMs)are controlled by the interaction characteristics between TBM and rock/soil layers.T...Rock-soil interface mixed ground(RSI)is often encountered in tunnel construction.The excavation loads of tunnel boring machines(TBMs)are controlled by the interaction characteristics between TBM and rock/soil layers.The different properties of rock and soil cause the varying interaction range and stress distribution.Currently,there have been several studies available to estimate excavation loads under RSI,and the conclusion is that the total loads increase with increasing the rock layer proportion in the excavation face.However,the previous studies cannot take the difference of rock/soil properties into account,except for the calculation of cutters loads.Therefore,the interaction characteristics between RSI and TBM is unclear.This paper analyzes the interaction characteristics between TBM’s main components and complex geological conditions(e.g.,layered soil,layered rock,and RSI condition).A model is proposed to calculate the total thrust and total torque assuming quasi-static equilibrium of the tunneling equipment.The rationality and applicability of the model are discussed and verified by two typical projects.Furthermore,the geological adaptability is discussed in terms of the excavation difficulty and the matching relationship between total torque and total thrust.The results indicate that when the rock layer proportion in the excavation face increases,the reduction of overall extrusion and friction loads is 1.5 times higher than the increase of disc cutters breaking load.The total loads and the ratio of the total torque to total thrust decrease approximately linearly.There is a power function relationship between the excavation difficulty index and the penetration depth.The results of this study provide an important reference for the total loads design of equipment propulsion systems and the parameter adjustment during tunnel construction.展开更多
It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport i...It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport in gravel-bed rivers causes inaccuracies of empirical formulas in the prediction of this phenomenon. Artificial intelligences as alternative approaches can provide solutions to such complex problems. The present study aimed at investigating the capability of kernel-based approaches in predicting total sediment loads and identification of influential parameters of total sediment transport. For this purpose, Gaussian process regression(GPR), Support vector machine(SVM) and kernel extreme learning machine(KELM) are applied to enhance the prediction level of total sediment loads in 19 mountain gravel-bed streams and rivers located in the United States. Several parameters based on two scenarios are investigated and consecutive predicted results are compared with some well-known formulas. Scenario 1 considers only hydraulic characteristics and on the other side, the second scenario was formed using hydraulic and sediment properties. The obtained results reveal that using the parameters of hydraulic conditions asinputs gives a good estimation of total sediment loads. Furthermore, it was revealed that KELM method with input parameters of Froude number(Fr), ratio of average velocity(V) to shear velocity(U*) and shields number(θ) yields a correlation coefficient(R) of 0.951, a Nash-Sutcliffe efficiency(NSE) of 0.903 and root mean squared error(RMSE) of 0.021 and indicates superior results compared with other methods. Performing sensitivity analysis showed that the ratio of average velocity to shear flow velocity and the Froude number are the most effective parameters in predicting total sediment loads of gravel-bed rivers.展开更多
Total pollutant load control management for total dissolved nitrogen(TDN) is an urgent task required to gain a good water quality status in Jiaozhou Bay(JZB), China. In this paper, the stoichiometry of multiform TDN o...Total pollutant load control management for total dissolved nitrogen(TDN) is an urgent task required to gain a good water quality status in Jiaozhou Bay(JZB), China. In this paper, the stoichiometry of multiform TDN on land-ocean interactions associated with marine biogeochemical reaction(LOIMBR) was studied by modeling the load-response relationship based on a three-dimensional water quality model of nitrogen in JZB. The results showed that the stoichiometry on LOIMBR of dissolved organic nitrogen(DON), NO3-N and NH4-N was 3:1:1, with one-third of the contribution on the concentration of dissolved inorganic nitrogen(DIN) in JZB for the land-based DON loads to DIN loads. Based on the stoichiometric relationship of nitrogen forms, the total maximum allocated load(TMAL) of equivalent TDN(ETDN) was approximately 5300 t a^-1 in JZB, equivalent to the TMAL of 5700, 5800 and 15600 t a^-1 for NH4-N, NO3-N and DON, respectively. According to the loads of ETDN, there were four outfalls overloaded in JZB in 2015, which lie in the head of the bay. In the four overloaded outfalls, besides NO3-N, NH4-N was the critical nitrogen control form for Moshui River, while DON for Dagu River and Haibo River. The results of numerical experiments further showed that JZB will achieve good water quality after 7 years by implementation of the 'different emission reduction' based on TMAL of ETDN, which is significantly better than 'equal percent removal'.展开更多
Bone cement has the capacity to release antibiotic molecules if any antibiotic is included in it, and these elution properties are improved as cement porosity is increased. In vitro studies have shown high local antib...Bone cement has the capacity to release antibiotic molecules if any antibiotic is included in it, and these elution properties are improved as cement porosity is increased. In vitro studies have shown high local antibiotic concentration for many hours or few days after its use. Antibiotic loaded bone cement(ALBC) is helpful when treating an infection in total knee arthroplasty(TKA) revision surgery. The purpose of this paper was to review the evidence for the routine use of ALBC in TKA in the literature, its pros and cons. Many authors have recommended the use of ALBC also in primary TKA for infection prophylaxis, but the evidence based on data from National Registries, randomized clinical trials and meta-analysis suggest a protective effect of ALBC against infection when used in hips, but not(or only mild) in knees. A possible explanation to this finding is that the duration and quantity of locally elevated antibiotic levels after surgery are smaller in TKA, due to the smaller amount of cement used for fixation in TKA-only a layer in the bone surface. There are some concerns about the routine use of ALBC in primary TKA as prophylaxis against infection: Firstly, there is a risk of hypersensivity or toxicity even when the chance is highly improbable. Secondly, there is a reduction in the mechanical properties of the cement, but this can be probably neglected if the antibiotic is used in low doses, not more than 1 g per 40 g cement package. Another significant concern is the increased economic cost, which could be overlooked if there were enough savings in treating fewer prosthetic infections. Finally, there is also a risk of selection of antibiotic-resistant strains of bacteria and this could be the main concern. If used, the choice of the antibiotic mixed in ALBC should consider microbiological aspects(broad antimicrobial spectrum and low rate of resistant bacteria), physical and chemical aspects(thermal stability, high water solubility), pharmacological characteristics(low risk to allergic reactions or toxicity) and economic aspects(not too expensive). The most commonly used antibiotics in ALBC are gentamicin, tobramycin and vancomycin. In conclusion, there is a paucity of randomized clinical trials in the use of ALBC in primary TKAs and the actual evidence of the effect of ALBC in reducing the risk of infection is insufficient. This, in addition to concerns about patient safety, risks of increase in the antibiotic resistance of microorganisms and the increase in costs in the procedure, lead us to recommend a cautious use of ALBC, perhaps only in high-risk patients(immunocompromised, morbidly obese, diabetic and patients with previous history of fracture or infection around the knee) unless the benefits of ALBC use were fully proven. Meanwhile, the rigorous use of peri-operative prophylactic systemic antibiotics and adoption of efficient antiseptic procedures and improved surgical techniques must be considered the gold standard in infection prevention in TKA surgery.展开更多
脑小血管病(cerebral small vessel disease,CSVD)是引起人群认知功能障碍最重要的原因之一,随着我国人口老龄化趋势的加重及医学影像技术的发展,CSVD的发病率呈逐年上升趋势,其所引起的认知功能障碍也越来越受到关注。因脑小血管病起...脑小血管病(cerebral small vessel disease,CSVD)是引起人群认知功能障碍最重要的原因之一,随着我国人口老龄化趋势的加重及医学影像技术的发展,CSVD的发病率呈逐年上升趋势,其所引起的认知功能障碍也越来越受到关注。因脑小血管病起病隐匿、进展缓慢、早期无明显临床表现,出现症状时已进入认知功能障碍的中晚期或者已经形成痴呆,往往带给患者不能逆转的损伤及沉重的医疗负担。本文就不同影像学类型脑小血管病及其MRI总负荷对认知功能的影响进行综述,进一步了解CSVD与认知功能的关系,为CSVD所致认知功能障碍的识别和预防提供帮助。展开更多
目的观察脑小血管病(cerebral small vessel disease,CSVD)总负荷的影响因素及血清同型半胱氨酸(Homocysteine,Hcy)水平与CSVD总负荷的相关性。方法选取2018年1月~2022年11月承德市中心医院神经内科确诊的CSVD患者242例,根据CSVD总负荷...目的观察脑小血管病(cerebral small vessel disease,CSVD)总负荷的影响因素及血清同型半胱氨酸(Homocysteine,Hcy)水平与CSVD总负荷的相关性。方法选取2018年1月~2022年11月承德市中心医院神经内科确诊的CSVD患者242例,根据CSVD总负荷评分进行分组,0~2分为低负荷组,3~4分为高负荷组。比较两组患者一般人口学资料、合并症、总胆固醇(TC)、三酰甘油(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、空腹血糖(FPG)、红细胞沉降率(ESR)、尿酸(UA)、肌酐(Cr)、Hcy水平,分析影响CSVD总负荷的风险因素,使用Spearman相关分析Hcy水平与CSVD总负荷的相关性。结果低负荷组共115例,高负荷组共127例。高负荷组年龄、TC、LDL-C、UA、Hcy水平均高于低负荷组[(66.81±10.23)岁vs.(60.28±11.40)岁、(4.96±1.18)mmol L vs.(4.54±1.02)mmol L、(3.36±0.97)mmol L vs.(3.04±1.01)mmol L、(308.84±48.61)μmol L vs.(292.79±50.04)μmol L、(14.78±3.91)μmol L vs.(13.64±4.04)μmol L],高血压、动脉粥样硬化占比均高于低负荷组[(79.53%vs.50.43%)、(72.44%vs.53.04%)],组间差异有统计学意义(t=4.696、2.948、2.513、2.529、2.229,χ^(2)=22.667、9.766,P<0.05)。多因素分析显示高龄、合并高血压、动脉粥样硬化、LDL-C、Hcy水平升高为CSVD总负荷增加的独立危险因素(P<0.05)。Hcy水平与CSVD总负荷呈弱正相关(r=0.028,P=0.013)。结论年龄、高血压、动脉粥样硬化、脂代谢异常等多种因素可影响CSVD总负荷,关注Hcy水平,早期干预可能优化CSVD的防治方案。展开更多
基金supported by Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers (Grant No.U1406403)the Sea Area Use Fund of Jiangsu Province (Environmental Capacity for the Key Coast of Jiangsu Province)+1 种基金the National Natural Science Foundation of China (No.41340046)Modeling work was completed at the Computing Services Center,Ocean University of China
文摘Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area.
基金supported by the National Natural Science Foundation of China(Grant No.51179211)
文摘Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport. By incorporating these counteracting driving forces in a phase-averaged manner, the theoretically-based quasi-steady formula of Wang (2007) is modified to predict the magnitude and direction of net cross-shore total load transport under the coaction of wave and current. The predictions show an excellent agreement with the measurement data on medium and fine sand collected by Dohmen-Janssen and Hanes (2002) and Schretlen (2012) in a full-scale wave flume at the Coastal Research Centre in Hannover, Germany. The modified formula can predict the net onshore transport of fine sand in sheet flows. In particular, it can predict the net offshore transport of medium sand in rippled beds through enlarged bed roughness, as well as the net offshore transport of fine-to-coarse sand in sheet flows with the aid of a new criterion to judge the occurrence of net offshore transport.
基金supported by the National Natural Science Foundation of China(Grant Nos.62173137,52172403,62303178).
文摘Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.
基金funded by National Key R&D Program of China[No.2018YFB1702505]National Natural Science Foundation of China[Grant Nos.12022205 and 11872269].
文摘Rock-soil interface mixed ground(RSI)is often encountered in tunnel construction.The excavation loads of tunnel boring machines(TBMs)are controlled by the interaction characteristics between TBM and rock/soil layers.The different properties of rock and soil cause the varying interaction range and stress distribution.Currently,there have been several studies available to estimate excavation loads under RSI,and the conclusion is that the total loads increase with increasing the rock layer proportion in the excavation face.However,the previous studies cannot take the difference of rock/soil properties into account,except for the calculation of cutters loads.Therefore,the interaction characteristics between RSI and TBM is unclear.This paper analyzes the interaction characteristics between TBM’s main components and complex geological conditions(e.g.,layered soil,layered rock,and RSI condition).A model is proposed to calculate the total thrust and total torque assuming quasi-static equilibrium of the tunneling equipment.The rationality and applicability of the model are discussed and verified by two typical projects.Furthermore,the geological adaptability is discussed in terms of the excavation difficulty and the matching relationship between total torque and total thrust.The results indicate that when the rock layer proportion in the excavation face increases,the reduction of overall extrusion and friction loads is 1.5 times higher than the increase of disc cutters breaking load.The total loads and the ratio of the total torque to total thrust decrease approximately linearly.There is a power function relationship between the excavation difficulty index and the penetration depth.The results of this study provide an important reference for the total loads design of equipment propulsion systems and the parameter adjustment during tunnel construction.
文摘It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport in gravel-bed rivers causes inaccuracies of empirical formulas in the prediction of this phenomenon. Artificial intelligences as alternative approaches can provide solutions to such complex problems. The present study aimed at investigating the capability of kernel-based approaches in predicting total sediment loads and identification of influential parameters of total sediment transport. For this purpose, Gaussian process regression(GPR), Support vector machine(SVM) and kernel extreme learning machine(KELM) are applied to enhance the prediction level of total sediment loads in 19 mountain gravel-bed streams and rivers located in the United States. Several parameters based on two scenarios are investigated and consecutive predicted results are compared with some well-known formulas. Scenario 1 considers only hydraulic characteristics and on the other side, the second scenario was formed using hydraulic and sediment properties. The obtained results reveal that using the parameters of hydraulic conditions asinputs gives a good estimation of total sediment loads. Furthermore, it was revealed that KELM method with input parameters of Froude number(Fr), ratio of average velocity(V) to shear velocity(U*) and shields number(θ) yields a correlation coefficient(R) of 0.951, a Nash-Sutcliffe efficiency(NSE) of 0.903 and root mean squared error(RMSE) of 0.021 and indicates superior results compared with other methods. Performing sensitivity analysis showed that the ratio of average velocity to shear flow velocity and the Froude number are the most effective parameters in predicting total sediment loads of gravel-bed rivers.
基金supported by the National Natural Science Foundation of China (No.41676062)the NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences (No.U1606404)+1 种基金the Key R&D Program of Shandong (No.2018GHY115005)the NSFC-Shandong Joint Fund (No.U1706215)。
文摘Total pollutant load control management for total dissolved nitrogen(TDN) is an urgent task required to gain a good water quality status in Jiaozhou Bay(JZB), China. In this paper, the stoichiometry of multiform TDN on land-ocean interactions associated with marine biogeochemical reaction(LOIMBR) was studied by modeling the load-response relationship based on a three-dimensional water quality model of nitrogen in JZB. The results showed that the stoichiometry on LOIMBR of dissolved organic nitrogen(DON), NO3-N and NH4-N was 3:1:1, with one-third of the contribution on the concentration of dissolved inorganic nitrogen(DIN) in JZB for the land-based DON loads to DIN loads. Based on the stoichiometric relationship of nitrogen forms, the total maximum allocated load(TMAL) of equivalent TDN(ETDN) was approximately 5300 t a^-1 in JZB, equivalent to the TMAL of 5700, 5800 and 15600 t a^-1 for NH4-N, NO3-N and DON, respectively. According to the loads of ETDN, there were four outfalls overloaded in JZB in 2015, which lie in the head of the bay. In the four overloaded outfalls, besides NO3-N, NH4-N was the critical nitrogen control form for Moshui River, while DON for Dagu River and Haibo River. The results of numerical experiments further showed that JZB will achieve good water quality after 7 years by implementation of the 'different emission reduction' based on TMAL of ETDN, which is significantly better than 'equal percent removal'.
文摘Bone cement has the capacity to release antibiotic molecules if any antibiotic is included in it, and these elution properties are improved as cement porosity is increased. In vitro studies have shown high local antibiotic concentration for many hours or few days after its use. Antibiotic loaded bone cement(ALBC) is helpful when treating an infection in total knee arthroplasty(TKA) revision surgery. The purpose of this paper was to review the evidence for the routine use of ALBC in TKA in the literature, its pros and cons. Many authors have recommended the use of ALBC also in primary TKA for infection prophylaxis, but the evidence based on data from National Registries, randomized clinical trials and meta-analysis suggest a protective effect of ALBC against infection when used in hips, but not(or only mild) in knees. A possible explanation to this finding is that the duration and quantity of locally elevated antibiotic levels after surgery are smaller in TKA, due to the smaller amount of cement used for fixation in TKA-only a layer in the bone surface. There are some concerns about the routine use of ALBC in primary TKA as prophylaxis against infection: Firstly, there is a risk of hypersensivity or toxicity even when the chance is highly improbable. Secondly, there is a reduction in the mechanical properties of the cement, but this can be probably neglected if the antibiotic is used in low doses, not more than 1 g per 40 g cement package. Another significant concern is the increased economic cost, which could be overlooked if there were enough savings in treating fewer prosthetic infections. Finally, there is also a risk of selection of antibiotic-resistant strains of bacteria and this could be the main concern. If used, the choice of the antibiotic mixed in ALBC should consider microbiological aspects(broad antimicrobial spectrum and low rate of resistant bacteria), physical and chemical aspects(thermal stability, high water solubility), pharmacological characteristics(low risk to allergic reactions or toxicity) and economic aspects(not too expensive). The most commonly used antibiotics in ALBC are gentamicin, tobramycin and vancomycin. In conclusion, there is a paucity of randomized clinical trials in the use of ALBC in primary TKAs and the actual evidence of the effect of ALBC in reducing the risk of infection is insufficient. This, in addition to concerns about patient safety, risks of increase in the antibiotic resistance of microorganisms and the increase in costs in the procedure, lead us to recommend a cautious use of ALBC, perhaps only in high-risk patients(immunocompromised, morbidly obese, diabetic and patients with previous history of fracture or infection around the knee) unless the benefits of ALBC use were fully proven. Meanwhile, the rigorous use of peri-operative prophylactic systemic antibiotics and adoption of efficient antiseptic procedures and improved surgical techniques must be considered the gold standard in infection prevention in TKA surgery.
文摘脑小血管病(cerebral small vessel disease,CSVD)是引起人群认知功能障碍最重要的原因之一,随着我国人口老龄化趋势的加重及医学影像技术的发展,CSVD的发病率呈逐年上升趋势,其所引起的认知功能障碍也越来越受到关注。因脑小血管病起病隐匿、进展缓慢、早期无明显临床表现,出现症状时已进入认知功能障碍的中晚期或者已经形成痴呆,往往带给患者不能逆转的损伤及沉重的医疗负担。本文就不同影像学类型脑小血管病及其MRI总负荷对认知功能的影响进行综述,进一步了解CSVD与认知功能的关系,为CSVD所致认知功能障碍的识别和预防提供帮助。
文摘目的观察脑小血管病(cerebral small vessel disease,CSVD)总负荷的影响因素及血清同型半胱氨酸(Homocysteine,Hcy)水平与CSVD总负荷的相关性。方法选取2018年1月~2022年11月承德市中心医院神经内科确诊的CSVD患者242例,根据CSVD总负荷评分进行分组,0~2分为低负荷组,3~4分为高负荷组。比较两组患者一般人口学资料、合并症、总胆固醇(TC)、三酰甘油(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、空腹血糖(FPG)、红细胞沉降率(ESR)、尿酸(UA)、肌酐(Cr)、Hcy水平,分析影响CSVD总负荷的风险因素,使用Spearman相关分析Hcy水平与CSVD总负荷的相关性。结果低负荷组共115例,高负荷组共127例。高负荷组年龄、TC、LDL-C、UA、Hcy水平均高于低负荷组[(66.81±10.23)岁vs.(60.28±11.40)岁、(4.96±1.18)mmol L vs.(4.54±1.02)mmol L、(3.36±0.97)mmol L vs.(3.04±1.01)mmol L、(308.84±48.61)μmol L vs.(292.79±50.04)μmol L、(14.78±3.91)μmol L vs.(13.64±4.04)μmol L],高血压、动脉粥样硬化占比均高于低负荷组[(79.53%vs.50.43%)、(72.44%vs.53.04%)],组间差异有统计学意义(t=4.696、2.948、2.513、2.529、2.229,χ^(2)=22.667、9.766,P<0.05)。多因素分析显示高龄、合并高血压、动脉粥样硬化、LDL-C、Hcy水平升高为CSVD总负荷增加的独立危险因素(P<0.05)。Hcy水平与CSVD总负荷呈弱正相关(r=0.028,P=0.013)。结论年龄、高血压、动脉粥样硬化、脂代谢异常等多种因素可影响CSVD总负荷,关注Hcy水平,早期干预可能优化CSVD的防治方案。