Solar radiation pressure is the main driving force and error source for precision orbit determination of navigation satellites.It is proportional to the solar irradiance,which is the"sun constant".In regular...Solar radiation pressure is the main driving force and error source for precision orbit determination of navigation satellites.It is proportional to the solar irradiance,which is the"sun constant".In regular calculation,the"solar constant"is regard as a constant.However,due to the existence of sunspots,flares,etc.,the solar constant is not fixed,the change in the year is about 1%.To investigate the variation of solar irradiance,we use interpolation and average segment modeling of total solar irradiance data of SORCE,establishing variance solar radiation pressure(VARSRP)model and average solar radiation pressure(AVESRP)model based on the built solar pressure model(SRPM)(constant model).According to observation data of global positioning system(GPS)and Beidou system(BDS)in 2015 and comparing the solar pressure acceleration of VARSRP,AVESRP and SRPM,the magnitude of change can reach 10-10 m/s^2.In addition,according to the satellite precise orbit determination,for GPS satellites,the results of VARSRP and AVESRP are slightly smaller than those of the SRPM model,and the improvement is between 0.1 to 0.5 mm.For geosynchronous orbit(GEO)satellites of BDS,The AVESRP and VARSRP have an improvement of 3.5 mm and 4.0 mm,respectively,based on overlapping arc,and SLR check results show the AVESRP model and the VARSRP model is improved by 2.3 mm and 3.5 mm,respectively.Moreover,the change of inclined geosynchronous orbit(IGSO)satellites and medium earth orbit(MEO)satellites is relatively small,and the improvement is smaller than 0.5 mm.展开更多
Solar radiation is a forcing of the climate system with a quasi-11-year period.As a quasi-period forcing,the influence of the phase of the solar cycle on the ocean system is an interesting topic of study.In this paper...Solar radiation is a forcing of the climate system with a quasi-11-year period.As a quasi-period forcing,the influence of the phase of the solar cycle on the ocean system is an interesting topic of study.In this paper,the authors investigate a particular feature,the ocean heat content(OHC)anomaly,in different phases of the total solar irradiance(TSI) cycle.The results show that almost opposite spatial patterns appear in the tropical Pacific during the ascending and declining phases of the TSI cycle.Further analysis reveals the presence of the quasi-decadal(11-year) solar signal in the SST,OHC and surface zonal wind anomaly field over the tropical Pacific with a high level of statistical confidence(95%).It is noted that the maximum centers of the ocean temperature anomaly are trapped in the upper ocean above the main pycnocline,in which the variations of OHC are related closely with zonal wind and ocean currents.展开更多
The climatic changes associated with solar variability are largely caused by variations in total solar irradiance and solar spectral irradiance with solar activity. Thus the spectral composition of solar radiation is ...The climatic changes associated with solar variability are largely caused by variations in total solar irradiance and solar spectral irradiance with solar activity. Thus the spectral composition of solar radiation is crucial in determining atomspheric structure. The variations in solar spectrum depend on the varied solar spots. Recently, evidence for a strong effect of solar activity on terrestrial isolation on ground-based measurements carried out by the National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Egypt (lat. 29?52'N and long. 31?20'E) during (1990-2000) were presented. Specifically, a strong increase of terrestrial isolation with sunspot number as well as a decline of the solar spectrum with solar activity was reported. Daily measurements of the solar radiation between 280 nm and 2800 nm were made by Eppley Pyranometer and Pyrheliometer instruments. The decreasing at the range 280 - 530 nm and 530 - 630 nm are represented less than 50% of direct solar radiation and the stability of at the range 630 - 695 nm and 695 - 2800 nm it mean that;some of difference radiation is appear in diffused radiation which allow to height of the temperature as much as the largest associated with significance as it appears from the curves of relative humidity.展开更多
In order to uncover a possible influence on the Earth's climate, we need a much longer time series, i.e., the total solar irradiance (TSI) which is also an interesting issue in its own right in solar physics. By c...In order to uncover a possible influence on the Earth's climate, we need a much longer time series, i.e., the total solar irradiance (TSI) which is also an interesting issue in its own right in solar physics. By comparing different solar indices associated with TSI during the period 1979 to 2009, several empirical models in the TSI are presented. We verify that the reconstruction model based on the three variables: sunspot number, sunspot area, and solar 10.7 cm radio flux, is the best one. As demonstrated by model calculations, the history of TSI was reconstructed back to 1947 based on 3-indices and to 1874 based on 2-indices, respectively. The reason that the reduced irradiance on the trough during 2006 to 2009 lasts long may be due to the about 85-year cycle of solar activity, which modulates the intensity of the 11-year cycle (Schwabe cycles), possesses a considerable potential to produce an effective reducing, and holds on a steadily lower level of irradiance.展开更多
Using the observational data of total solar irradiance(TSI)from 1976 to 2006,the evolution of total solar irradiance and the rela-tionship between TSI and sunspot number(SSN)have been analyzed with the wavelet techniq...Using the observational data of total solar irradiance(TSI)from 1976 to 2006,the evolution of total solar irradiance and the rela-tionship between TSI and sunspot number(SSN)have been analyzed with the wavelet technique.The results of the continuous wavelet transform(CWT)indicate that the TSI has multi-scale evolutionary characteristics.In the low frequency band,the TSI and SSN show similar variation with a significant and steady oscillation period from 8 to 11.4 a.While in the high frequency band,only around the maximum time of solar cycles,both the TSI and SSN present a significant intermittent oscillation period from 2 to 6 months.The results of the cross wavelet transform indicate that there is significant in-phase resonance oscillation between the TSI and SSN in 8-11.4 a band,where the variation of the SSN is 2 months ahead of that of TSI.Those results confirm the SSN as the primary cause for TSI's periodic variation in the time scale of 8-11.4 a.However for the 2-6 month band,significant resonance periodicity is observed only within the maximum time of solar cycle,but the phase relationship between the TSI and SSN is unsteady.Finally,a reliable TSI monthly series from 1878 to 1975 is reconstructed and tested.展开更多
目前太阳对地球能量平衡影响的研究大都是以太阳总辐射通量密度作为输入参数的.本文以美国航空航天局(National Aeronautics and Space Administration,NASA)太阳辐射与气候实验项目的卫星实测数据为基础,对太阳上升相(2010年上半年)和...目前太阳对地球能量平衡影响的研究大都是以太阳总辐射通量密度作为输入参数的.本文以美国航空航天局(National Aeronautics and Space Administration,NASA)太阳辐射与气候实验项目的卫星实测数据为基础,对太阳上升相(2010年上半年)和下降相(2007年12月)期间太阳光谱变化对地球能量平衡的影响进行了研究.结果表明,2010年上半年较强的太阳总辐射通量密度主要是由紫外及红外波段的能量增强引起的,其在200~400 nm和760~4000 nm波段内的平均能量分别增加了0.11%和0.05%,而在400~760 nm可见光区的能量却呈减小趋势,平均减小量为0.05%.通过对MLS 2.2全球臭氧日数据进行再分析后发现,相对于2007年12月,2010年上半年平流层臭氧浓度也有所增加,其中在太阳紫外辐射呈现较大增强的2月和3月,其臭氧增量也相对较大,最大值分别出现在33 km和40 km处,值为0.6 mL·m^(-3)和0.62 mL·m^(-3).因此,可见光区能量减弱与平流层臭氧浓度增加的双重削弱作用致使虽然2010年上半年的太阳总辐射通量密度较大,但是到达对流层顶的太阳辐射却有所减小,最大减小量出现在3月,值为0.15 W·m^(-2).这一结果说明,太阳活动或总辐射通量密度的增强也有可能对地球对流层系统起到冷却作用.展开更多
基金supported by the National Key Research and Development Program of China (No.2016YFB0501405)the National Natural Science Foundation of China (No.11973073)+1 种基金the Basic Project of Ministry of Science and Technology of China (No.2015FY310200)the Shanghai Key Laboratory of Space Navigation and Position Techniques (No.06DZ22101)
文摘Solar radiation pressure is the main driving force and error source for precision orbit determination of navigation satellites.It is proportional to the solar irradiance,which is the"sun constant".In regular calculation,the"solar constant"is regard as a constant.However,due to the existence of sunspots,flares,etc.,the solar constant is not fixed,the change in the year is about 1%.To investigate the variation of solar irradiance,we use interpolation and average segment modeling of total solar irradiance data of SORCE,establishing variance solar radiation pressure(VARSRP)model and average solar radiation pressure(AVESRP)model based on the built solar pressure model(SRPM)(constant model).According to observation data of global positioning system(GPS)and Beidou system(BDS)in 2015 and comparing the solar pressure acceleration of VARSRP,AVESRP and SRPM,the magnitude of change can reach 10-10 m/s^2.In addition,according to the satellite precise orbit determination,for GPS satellites,the results of VARSRP and AVESRP are slightly smaller than those of the SRPM model,and the improvement is between 0.1 to 0.5 mm.For geosynchronous orbit(GEO)satellites of BDS,The AVESRP and VARSRP have an improvement of 3.5 mm and 4.0 mm,respectively,based on overlapping arc,and SLR check results show the AVESRP model and the VARSRP model is improved by 2.3 mm and 3.5 mm,respectively.Moreover,the change of inclined geosynchronous orbit(IGSO)satellites and medium earth orbit(MEO)satellites is relatively small,and the improvement is smaller than 0.5 mm.
基金supported by the National Basic Research Program of China[grant number 2012CB957804]the External Cooperation Program of Bureau of International Co-operation,Chinese Academy of Sciences[grant number 134111KYSB20150016]
文摘Solar radiation is a forcing of the climate system with a quasi-11-year period.As a quasi-period forcing,the influence of the phase of the solar cycle on the ocean system is an interesting topic of study.In this paper,the authors investigate a particular feature,the ocean heat content(OHC)anomaly,in different phases of the total solar irradiance(TSI) cycle.The results show that almost opposite spatial patterns appear in the tropical Pacific during the ascending and declining phases of the TSI cycle.Further analysis reveals the presence of the quasi-decadal(11-year) solar signal in the SST,OHC and surface zonal wind anomaly field over the tropical Pacific with a high level of statistical confidence(95%).It is noted that the maximum centers of the ocean temperature anomaly are trapped in the upper ocean above the main pycnocline,in which the variations of OHC are related closely with zonal wind and ocean currents.
文摘The climatic changes associated with solar variability are largely caused by variations in total solar irradiance and solar spectral irradiance with solar activity. Thus the spectral composition of solar radiation is crucial in determining atomspheric structure. The variations in solar spectrum depend on the varied solar spots. Recently, evidence for a strong effect of solar activity on terrestrial isolation on ground-based measurements carried out by the National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Egypt (lat. 29?52'N and long. 31?20'E) during (1990-2000) were presented. Specifically, a strong increase of terrestrial isolation with sunspot number as well as a decline of the solar spectrum with solar activity was reported. Daily measurements of the solar radiation between 280 nm and 2800 nm were made by Eppley Pyranometer and Pyrheliometer instruments. The decreasing at the range 280 - 530 nm and 530 - 630 nm are represented less than 50% of direct solar radiation and the stability of at the range 630 - 695 nm and 695 - 2800 nm it mean that;some of difference radiation is appear in diffused radiation which allow to height of the temperature as much as the largest associated with significance as it appears from the curves of relative humidity.
基金supported by the National Natural Science Foundation of China (Grant No. 10978007)the Excellent Scientists Training Program of Beijing
文摘In order to uncover a possible influence on the Earth's climate, we need a much longer time series, i.e., the total solar irradiance (TSI) which is also an interesting issue in its own right in solar physics. By comparing different solar indices associated with TSI during the period 1979 to 2009, several empirical models in the TSI are presented. We verify that the reconstruction model based on the three variables: sunspot number, sunspot area, and solar 10.7 cm radio flux, is the best one. As demonstrated by model calculations, the history of TSI was reconstructed back to 1947 based on 3-indices and to 1874 based on 2-indices, respectively. The reason that the reduced irradiance on the trough during 2006 to 2009 lasts long may be due to the about 85-year cycle of solar activity, which modulates the intensity of the 11-year cycle (Schwabe cycles), possesses a considerable potential to produce an effective reducing, and holds on a steadily lower level of irradiance.
基金supported by the National Natural Science Foundation of China(40875054,U0933603)the Natural Science Foundation of Yunnan Province(2009CC002)
文摘Using the observational data of total solar irradiance(TSI)from 1976 to 2006,the evolution of total solar irradiance and the rela-tionship between TSI and sunspot number(SSN)have been analyzed with the wavelet technique.The results of the continuous wavelet transform(CWT)indicate that the TSI has multi-scale evolutionary characteristics.In the low frequency band,the TSI and SSN show similar variation with a significant and steady oscillation period from 8 to 11.4 a.While in the high frequency band,only around the maximum time of solar cycles,both the TSI and SSN present a significant intermittent oscillation period from 2 to 6 months.The results of the cross wavelet transform indicate that there is significant in-phase resonance oscillation between the TSI and SSN in 8-11.4 a band,where the variation of the SSN is 2 months ahead of that of TSI.Those results confirm the SSN as the primary cause for TSI's periodic variation in the time scale of 8-11.4 a.However for the 2-6 month band,significant resonance periodicity is observed only within the maximum time of solar cycle,but the phase relationship between the TSI and SSN is unsteady.Finally,a reliable TSI monthly series from 1878 to 1975 is reconstructed and tested.