This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angl...This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.展开更多
应用于三相整流器的有限控制集-模型预测控制(finite control set model predictive control,FCS-MPC)方法以指标函数最小为目标,遍历计算输出单一最优电压矢量,开关频率不固定,输入电流品质依赖较高的采样频率。该文提出一种基于离散...应用于三相整流器的有限控制集-模型预测控制(finite control set model predictive control,FCS-MPC)方法以指标函数最小为目标,遍历计算输出单一最优电压矢量,开关频率不固定,输入电流品质依赖较高的采样频率。该文提出一种基于离散空间矢量调制(discretespacevector modulation,DSVM)的Vienna整流器模型预测控制方法。该方法采用由实矢量线性组合而成的虚拟矢量,在一个采样周期内可输出多个实矢量,能固定开关频率;通过引入虚拟矢量,增加预测控制中的可控矢量集,能有效减少参考电压和预测电压之间的误差,从而降低输入电流总谐波畸变率(total harmonics distortion,THD)。该文分析虚拟矢量及其调制方式,给出DSVM-MPC的实现方法。为验证所提DSVMMPC方法的正确性,与常规FCS-MPC方法进行仿真和实验对比分析,结果表明所提方法可提高输入电流品质。展开更多
文摘This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.
文摘应用于三相整流器的有限控制集-模型预测控制(finite control set model predictive control,FCS-MPC)方法以指标函数最小为目标,遍历计算输出单一最优电压矢量,开关频率不固定,输入电流品质依赖较高的采样频率。该文提出一种基于离散空间矢量调制(discretespacevector modulation,DSVM)的Vienna整流器模型预测控制方法。该方法采用由实矢量线性组合而成的虚拟矢量,在一个采样周期内可输出多个实矢量,能固定开关频率;通过引入虚拟矢量,增加预测控制中的可控矢量集,能有效减少参考电压和预测电压之间的误差,从而降低输入电流总谐波畸变率(total harmonics distortion,THD)。该文分析虚拟矢量及其调制方式,给出DSVM-MPC的实现方法。为验证所提DSVMMPC方法的正确性,与常规FCS-MPC方法进行仿真和实验对比分析,结果表明所提方法可提高输入电流品质。