Gait disorders contribute to the risk of falls and successive injuries, especially to elderly populations. The risk of falls becomes higher for hip osteoarthritis (OA) and hip arthroplasties patients due to poor balan...Gait disorders contribute to the risk of falls and successive injuries, especially to elderly populations. The risk of falls becomes higher for hip osteoarthritis (OA) and hip arthroplasties patients due to poor balancing and gait impairment. Bone adaptation and bone loss are fundamental issues in considering the changes of bone behavior and gait pattern. In this study, computational analysis of the lower limbs was conducted to estimate the bone adaptation after hip arthroplasties procedure. 3D inhomogeneous model of lower limb was developed from computed topography (CT- based) data of 79 years old patient with hip osteoarthritis problem in left limb. Two types of arthroplaties were constructed in the left limb, namely total hip arthroplasty and resurfacing hip arthroplasty using commercial biomedical software, Mechanical Finder v6.1. Prosthesis stem and acetabular cup of THA were modelled as titanium alloy material (E = 114 GPa, v = 0.34), femoral ball and bearing insert as alumina properties (E = 370 GPa, v = 0.22). Meanwhile, RHA implant was assigned as Co-Cr-Mo material (E = 230 GPa, v = 0.30). Contact between both implants and bone were considered to be perfectly bonded at the interface. A load case of quiet standing position was conducted in this analysis with 60 kg of the patients’ body weight. The load was applied at the cross sectional lumbar vertebra and fixed at the distal of femoral shafts. Results show different patterns of stress distribution in right and left (operated) limbs for hip OA, THA and RHA models. An indication of stress alteration on both limbs after arthroplasties suggested that the bone adaptation occurred. The higher percentage of change in the left limb projected that the adaptation was more critical in operated limb.展开更多
文摘Gait disorders contribute to the risk of falls and successive injuries, especially to elderly populations. The risk of falls becomes higher for hip osteoarthritis (OA) and hip arthroplasties patients due to poor balancing and gait impairment. Bone adaptation and bone loss are fundamental issues in considering the changes of bone behavior and gait pattern. In this study, computational analysis of the lower limbs was conducted to estimate the bone adaptation after hip arthroplasties procedure. 3D inhomogeneous model of lower limb was developed from computed topography (CT- based) data of 79 years old patient with hip osteoarthritis problem in left limb. Two types of arthroplaties were constructed in the left limb, namely total hip arthroplasty and resurfacing hip arthroplasty using commercial biomedical software, Mechanical Finder v6.1. Prosthesis stem and acetabular cup of THA were modelled as titanium alloy material (E = 114 GPa, v = 0.34), femoral ball and bearing insert as alumina properties (E = 370 GPa, v = 0.22). Meanwhile, RHA implant was assigned as Co-Cr-Mo material (E = 230 GPa, v = 0.30). Contact between both implants and bone were considered to be perfectly bonded at the interface. A load case of quiet standing position was conducted in this analysis with 60 kg of the patients’ body weight. The load was applied at the cross sectional lumbar vertebra and fixed at the distal of femoral shafts. Results show different patterns of stress distribution in right and left (operated) limbs for hip OA, THA and RHA models. An indication of stress alteration on both limbs after arthroplasties suggested that the bone adaptation occurred. The higher percentage of change in the left limb projected that the adaptation was more critical in operated limb.