期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于ETAFSVM的高光谱遥感图像自动波段选择和分类 被引量:8
1
作者 戴宏亮 戴道清 《计算机科学》 CSCD 北大核心 2009年第4期268-272,共5页
提出了一种新型的具有良好特性的支持向量机——全间隔自适应模糊支持向量机(TAFSVM),并提出一种新的遗传算法——智能遗传算法(IGA)来设计一个TAFSVM分类器,称为ETAFSVM,同时优化高光谱遥感图像自动波段选择和TAFSVM参数集,并且结合5-f... 提出了一种新型的具有良好特性的支持向量机——全间隔自适应模糊支持向量机(TAFSVM),并提出一种新的遗传算法——智能遗传算法(IGA)来设计一个TAFSVM分类器,称为ETAFSVM,同时优化高光谱遥感图像自动波段选择和TAFSVM参数集,并且结合5-fold交叉验证来确定其泛化能力,最后将ETAFSVM应用于高光谱遥感图像数据。通过先进行自适应波段选择后再用径向基神经网络分类器、K-最近邻分类器和标准支持向量机等3种方法进行全部分类精度比较,以及与这3种方法直接进行类别分类精度和平均分类精度比较,其结果表明运用ETAFS-VM不仅可以自动进行波段选择,而且分类精度较高,对Hughes现象敏感性较低,是进行高光谱遥感图像分类的一种有效方法。 展开更多
关键词 全间隔自适应模糊支持向量机 智能遗传算法 高光谱遥感图像 分类
下载PDF
基于ITAFSVM的微阵列数据特征选择和分类 被引量:2
2
作者 戴宏亮 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期37-42,47,共7页
支持向量机已经被成功应用于基因表达谱数据分析。但是,仍有开放问题需要解决:①支持向量机不能自动进行基因表达谱数据的特征选择;②支持向量机的参数优选没有简单有效的办法。一种新型具有良好特性的支持向量机——全间隔自适应模糊... 支持向量机已经被成功应用于基因表达谱数据分析。但是,仍有开放问题需要解决:①支持向量机不能自动进行基因表达谱数据的特征选择;②支持向量机的参数优选没有简单有效的办法。一种新型具有良好特性的支持向量机——全间隔自适应模糊支持向量机(TAFSVM)被提出。并且提出一种新的遗传算法——智能遗传算法(IGA)来设计一个TAFSVM分类器,称为ITAFSVM,同时优化TAFSVM参数集和特征选择,并且结合10-fold交叉验证来确定其泛化能力。最后将ITAFSVM应用于四种基因表达谱数据集。通过与进化支持向量机(ESVM)方法、粗糙集与径向基神经网络组合(RBF-RBFNN)方法进行了比较,实验结果表明运用ITAFSVM不仅可以自动进行基因表达谱数据特征选择,而且分类精度和稳定性都较高,速度更快。 展开更多
关键词 全间隔自适应模糊支持向量机 智能遗传算法 基因表达谱 分类 微阵列
下载PDF
基于实值遗传算法与TAFSVM的遥感图像分类 被引量:1
3
作者 戴宏亮 《计算机工程与应用》 CSCD 北大核心 2010年第4期4-7,共4页
支持向量机已经被成功应用于遥感图像分类。一种新型具有良好特性的支持向量机--全间隔自适应模糊支持向量机被提出。这种新型的支持向量机具有通过训练集的模糊性来增强泛化能力;对不平衡训练集具有自适应性,对正负数据采用不同的损失... 支持向量机已经被成功应用于遥感图像分类。一种新型具有良好特性的支持向量机--全间隔自适应模糊支持向量机被提出。这种新型的支持向量机具有通过训练集的模糊性来增强泛化能力;对不平衡训练集具有自适应性,对正负数据采用不同的损失算法,可以提高正确分类率;通过引进全间隔算法来代替软间隔算法,可以得到更低的泛化误差等优良特性,符合遥感图像数据的内在规律。并且运用实值遗传算法对其进行参数优选,得到一种新的分类器——AGATAFSVM。最后将该分类器应用于遥感图像分类。实验结果表明,该分类器非常适用于遥感图像分类,分类精度和稳定性明显高于径向基神经网络分类器、最近邻分类器和标准支持向量机。 展开更多
关键词 全间隔自适应模糊支持向量机 实值遗传算法 遥感图像 分类
下载PDF
基于智能全间隔自适应模糊支持向量机的水质分类 被引量:1
4
作者 戴宏亮 戴道清 《计算机应用》 CSCD 北大核心 2008年第11期2847-2849,2870,共4页
提出了一种新型具有良好特性的支持向量机——全间隔自适应模糊支持向量机(TAFSVM)。运用实值遗传算法(RGA)对其进行参数优选,得到一种新的智能模型——实值遗传算法优化的全间隔自适应模糊支持向量机(RGATAFSVM)模型,并且应用于四种不... 提出了一种新型具有良好特性的支持向量机——全间隔自适应模糊支持向量机(TAFSVM)。运用实值遗传算法(RGA)对其进行参数优选,得到一种新的智能模型——实值遗传算法优化的全间隔自适应模糊支持向量机(RGATAFSVM)模型,并且应用于四种不同的水质数据分类。实验结果表明,提出的模型相对标准支持向量机、BP神经网络和单因子分类方法具有较高的分类精度和较高的稳定性,是一种有效的水质分类方法。 展开更多
关键词 全间隔自适应模糊支持向量机 实值遗传算法 水质 分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部