Surveillance of water quality to ensure microbiological safety is a vital public health function to prevent water borne diseases. Bacterial total coliform and Escherichia coli (E. coli) examination provide indication ...Surveillance of water quality to ensure microbiological safety is a vital public health function to prevent water borne diseases. Bacterial total coliform and Escherichia coli (E. coli) examination provide indication of the hygienic condition of drinking water and are major tools in the assessment of the health risk borne by pathogen in water. Unfortunately, there is insufficient information on the total coliform and E. coli amounts in the common drinking water sources in Mbarara Municipality, Uganda despite the eminent anthropogenic sources of contamination. Hence the study established the sanitary risk and quantified the total coliform and E. coli load in selected drinking water sources in Mbarara Municipality, Uganda. A total of 70 water samples were collected from selected boreholes, springs, wells and rainwater in Nyamitanga, Kamukuzi and Kakoba divisions of Mbarara municipality. The water samples were analysed for total coliform and E. coli abundance using the American Public Health Association (APHA) standard method. The total coliform and Escherichia coli counts were compared with the World Health Organization (WHO) drinking water standard guidelines. The findings indicate that all the studied groundwater sources (boreholes, springs and wells) in Mbarara Municipality were not compliant to either both or one of the WHO total coliform ( ml) and E. coli (0 CFU/100 ml) criteria for drinking water hence they are unsuitable for drinking without treatment e.g. boiling etc. Only rainwater collected from Mbarara University of Science and Technology met the WHO total coliform and E. coli criteria for drinking water thus is suitable for drinking without any treatment. There is a strong linkage between bacterial (total coliforms and E. coli) water quality and water source sanitation, as well as the proximity of latrines, animal farms and landfills around the water sources. Mbarara municipal council should therefore ensure effective and regular operation and maintenance of the drinking water sources through the adoption and promotion of appropriate water safety plans.展开更多
In the present study, we assessed the bacteriological quality of water of drinking water sources in Kabale Municipality. A total of 28 water samples were collected from 14 water springs during the dry and wet season a...In the present study, we assessed the bacteriological quality of water of drinking water sources in Kabale Municipality. A total of 28 water samples were collected from 14 water springs during the dry and wet season and analyzed for determination of Escherichia coli (E. coli), and Total Heterotrophic Bacteria (THB) using the membrane filtration method. Most water springs located in less than 20 meters away from residential areas were associated with bacterial contamination. The mean concentrations of E. coli, total coliforms, and THB were 24.07 CFU/100 ml, 85.71 CFU/100 ml, and 197.07 CFU/100 ml, respectively in the wet season. While in the dry season, the mean concentrations were 2 CFU/100 ml, 10 CFU/100 ml, and 91 CFU/100 ml for E. coli, total coliforms, and THB, respectively. There were significant differences between CFU of total coliforms, HTB, between wet and dry seasons (p = 0.026). Samples collected and analyzed during the wet season for total coliforms did not conform to WHO drinking water quality guideline value of no detection per 100 ml. The study concludes that the majority of spring water sources are located in less than 20 meters away from residential areas with significant paved areas, the presence of septic tanks and pit latrines. Wet season significantly affects the quality of domestic water sources than the dry season. The study recommends that spring water should be treated before drinking due to high bacteria concentrations which makes it unsafe for consumption.展开更多
Regulation of stormwater runoff is increasing throughout the United States.The Environmental Protection Agency(EPA)and state agencies are beginning to move toward effluent and/or load limits for pollutants in stormwat...Regulation of stormwater runoff is increasing throughout the United States.The Environmental Protection Agency(EPA)and state agencies are beginning to move toward effluent and/or load limits for pollutants in stormwater.Compliance costs for treating urban stormwater runoff,especially in highly-developed areas where retrofits are required,will only continue to increase.展开更多
文摘Surveillance of water quality to ensure microbiological safety is a vital public health function to prevent water borne diseases. Bacterial total coliform and Escherichia coli (E. coli) examination provide indication of the hygienic condition of drinking water and are major tools in the assessment of the health risk borne by pathogen in water. Unfortunately, there is insufficient information on the total coliform and E. coli amounts in the common drinking water sources in Mbarara Municipality, Uganda despite the eminent anthropogenic sources of contamination. Hence the study established the sanitary risk and quantified the total coliform and E. coli load in selected drinking water sources in Mbarara Municipality, Uganda. A total of 70 water samples were collected from selected boreholes, springs, wells and rainwater in Nyamitanga, Kamukuzi and Kakoba divisions of Mbarara municipality. The water samples were analysed for total coliform and E. coli abundance using the American Public Health Association (APHA) standard method. The total coliform and Escherichia coli counts were compared with the World Health Organization (WHO) drinking water standard guidelines. The findings indicate that all the studied groundwater sources (boreholes, springs and wells) in Mbarara Municipality were not compliant to either both or one of the WHO total coliform ( ml) and E. coli (0 CFU/100 ml) criteria for drinking water hence they are unsuitable for drinking without treatment e.g. boiling etc. Only rainwater collected from Mbarara University of Science and Technology met the WHO total coliform and E. coli criteria for drinking water thus is suitable for drinking without any treatment. There is a strong linkage between bacterial (total coliforms and E. coli) water quality and water source sanitation, as well as the proximity of latrines, animal farms and landfills around the water sources. Mbarara municipal council should therefore ensure effective and regular operation and maintenance of the drinking water sources through the adoption and promotion of appropriate water safety plans.
文摘In the present study, we assessed the bacteriological quality of water of drinking water sources in Kabale Municipality. A total of 28 water samples were collected from 14 water springs during the dry and wet season and analyzed for determination of Escherichia coli (E. coli), and Total Heterotrophic Bacteria (THB) using the membrane filtration method. Most water springs located in less than 20 meters away from residential areas were associated with bacterial contamination. The mean concentrations of E. coli, total coliforms, and THB were 24.07 CFU/100 ml, 85.71 CFU/100 ml, and 197.07 CFU/100 ml, respectively in the wet season. While in the dry season, the mean concentrations were 2 CFU/100 ml, 10 CFU/100 ml, and 91 CFU/100 ml for E. coli, total coliforms, and THB, respectively. There were significant differences between CFU of total coliforms, HTB, between wet and dry seasons (p = 0.026). Samples collected and analyzed during the wet season for total coliforms did not conform to WHO drinking water quality guideline value of no detection per 100 ml. The study concludes that the majority of spring water sources are located in less than 20 meters away from residential areas with significant paved areas, the presence of septic tanks and pit latrines. Wet season significantly affects the quality of domestic water sources than the dry season. The study recommends that spring water should be treated before drinking due to high bacteria concentrations which makes it unsafe for consumption.
文摘Regulation of stormwater runoff is increasing throughout the United States.The Environmental Protection Agency(EPA)and state agencies are beginning to move toward effluent and/or load limits for pollutants in stormwater.Compliance costs for treating urban stormwater runoff,especially in highly-developed areas where retrofits are required,will only continue to increase.