The organic matter in tropospheric aerosol plays an important role in atmospheric physical and chemical processes. The bulk of organic matter, representing a significant proportion of the total suspended particulate ...The organic matter in tropospheric aerosol plays an important role in atmospheric physical and chemical processes. The bulk of organic matter, representing a significant proportion of the total suspended particulate (TSP) mass, is bound to polymeric material whose structure and properties are largely unknown. Here we used thermodesorption gas chromatography/mass spectrometry (Td-GC/MS) to study organic compounds of low molecular mass and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) to characterize the chemical structure of macromolecules in TSP samples collected in different seasons from different sites in Guangzhou. n-Alkanes, fatty acids and nitriles were the predominant compounds in the thermodesorption products, whereas aromatics, fatty acids, nitriles and n-alkanes/alkenes were the major compounds in the pyrolysates. The results indicated that aromatics were main units in macromolecules. The fatty acids and nltriles formed from carboxylic ammonium salts were detected in both thermodesorption products and pyrolysates at a certain concentration, indicating the importance of these compounds in TSP formation. The TSP source mainly determined the occurrence of compounds in samples from urban, suburban and forest sites, whereas the TSP source and formation process maybe controlled the seasonal variation in compounds detected. High levels of nitriles in summer samples from suburban and forest sites coincide with the release of ammonium from the land and of fatty acids from vegetation at these sites.展开更多
Wind erosion is a geomorphic process in arid and semi-arid areas and has substantial implications for regional climate and desertification.In the Columbia Plateau of northwestern United States,the emissions from fine ...Wind erosion is a geomorphic process in arid and semi-arid areas and has substantial implications for regional climate and desertification.In the Columbia Plateau of northwestern United States,the emissions from fine particles of loessial soils often contribute to the exceedance of inhalable particulate matter(PM)with an aerodynamic diameter of 10μm or less(PM10)according to the air quality standards.However,little is known about the threshold friction velocity(TFV)for particles of different sizes that comprise these soils.In this study,soil samples of two representative soil types(Warden sandy loam and Ritzville silt loam)collected from the Columbia Plateau were sieved to seven particle size fractions,and an experiment was then conducted to determine the relationship between TFV and particle size fraction.The results revealed that soil particle size significantly affected the initiation of soil movement and TFV;TFV ranged 0.304-0.844 and 0.249-0.739 m/s for different particle size fractions of Ritzville silt loam and Warden sandy loam,respectively.PM10 and total suspended particulates(TSP)emissions from a bed of 63-90μm soil particles were markedly higher for Warden sandy loam than for Ritzville silt loam.Together with the lower TFV of Warden sandy loam,dust emissions from fine particles(<100μm in diameter)of Warden sandy loam thus may be a main contributor to dust in the region's atmosphere,since the PM10 emissions from the soil erosion surfaces and its ensuing suspension within the atmosphere constitute an essential process of soil erosion in the Columbia Plateau.Developing and implementing strategic land management practices on sandy loam soils is therefore necessary to control dust emissions in the Columbia Plateau.展开更多
The paper takes the Shanghai-Nanjing expressway as the research subject and takes the samples of the Total Suspended Particulates (TSP) on both sides of the highway as samples to analyze the pollution and the pattern ...The paper takes the Shanghai-Nanjing expressway as the research subject and takes the samples of the Total Suspended Particulates (TSP) on both sides of the highway as samples to analyze the pollution and the pattern of pollution distribution. The study shows that the concentration of TSP is very high, even six times of the national limit value.展开更多
Dry deposition velocity of total suspended particles (TSP) is an effective parameter that describes the speed of atmospheric particulate matter deposit to the natural surface. It is also an important indicator to th...Dry deposition velocity of total suspended particles (TSP) is an effective parameter that describes the speed of atmospheric particulate matter deposit to the natural surface. It is also an important indicator to the capacity of atmosphere self-depuration. However, the spatial and temporal variations in dry deposition velocity of TSP at different urban landscapes and the relationship between dry deposition velocity and the meteorological parameters are subject to large uncertainties. We concurrently investigated this relationship at four different landscapes of Guangzhou, from October to December of 2009. The result of the average dry deposition velocity is (1.49 ± 0.77), (1.44 ± 0.77), (1.13 ±0.53) and (1.82± 0.82) cm/sec for urban commercial landscape, urban forest landscape, urban residential landscape and country landscape, respectively. This spatial variation can be explained by the difference of both particle size composition of TSP and meteorological parameters of sampling sites. Dry deposition velocity of TSP has a positive correlation with wind speed, and a negative correlation with temperature and relative humidity. Wind speed is the strongest factor that affects the magnitude of TSP dry deposition velocity, and the temperature is another considerable strong meteorological factor. We also find out that the relative humidity brings less impact, especially during the dry season. It is thus implied that the current global warming and urban heat island effect may lead to correlative changes in TSP dry deposition velocity, especially in the urban areas.展开更多
基金supported by the National Natural Science Foundation of China (No. 40505026)the Chinese Academy of Sciences (No. KZCX2-YW-403)
文摘The organic matter in tropospheric aerosol plays an important role in atmospheric physical and chemical processes. The bulk of organic matter, representing a significant proportion of the total suspended particulate (TSP) mass, is bound to polymeric material whose structure and properties are largely unknown. Here we used thermodesorption gas chromatography/mass spectrometry (Td-GC/MS) to study organic compounds of low molecular mass and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) to characterize the chemical structure of macromolecules in TSP samples collected in different seasons from different sites in Guangzhou. n-Alkanes, fatty acids and nitriles were the predominant compounds in the thermodesorption products, whereas aromatics, fatty acids, nitriles and n-alkanes/alkenes were the major compounds in the pyrolysates. The results indicated that aromatics were main units in macromolecules. The fatty acids and nltriles formed from carboxylic ammonium salts were detected in both thermodesorption products and pyrolysates at a certain concentration, indicating the importance of these compounds in TSP formation. The TSP source mainly determined the occurrence of compounds in samples from urban, suburban and forest sites, whereas the TSP source and formation process maybe controlled the seasonal variation in compounds detected. High levels of nitriles in summer samples from suburban and forest sites coincide with the release of ammonium from the land and of fatty acids from vegetation at these sites.
基金Basic Research Funds for Colleges and Universities directly under the Inner Mongolia Autonomous Region:Desert Ecosystem Protection and Restoration Innovation Team(BR 22-13-03).
文摘Wind erosion is a geomorphic process in arid and semi-arid areas and has substantial implications for regional climate and desertification.In the Columbia Plateau of northwestern United States,the emissions from fine particles of loessial soils often contribute to the exceedance of inhalable particulate matter(PM)with an aerodynamic diameter of 10μm or less(PM10)according to the air quality standards.However,little is known about the threshold friction velocity(TFV)for particles of different sizes that comprise these soils.In this study,soil samples of two representative soil types(Warden sandy loam and Ritzville silt loam)collected from the Columbia Plateau were sieved to seven particle size fractions,and an experiment was then conducted to determine the relationship between TFV and particle size fraction.The results revealed that soil particle size significantly affected the initiation of soil movement and TFV;TFV ranged 0.304-0.844 and 0.249-0.739 m/s for different particle size fractions of Ritzville silt loam and Warden sandy loam,respectively.PM10 and total suspended particulates(TSP)emissions from a bed of 63-90μm soil particles were markedly higher for Warden sandy loam than for Ritzville silt loam.Together with the lower TFV of Warden sandy loam,dust emissions from fine particles(<100μm in diameter)of Warden sandy loam thus may be a main contributor to dust in the region's atmosphere,since the PM10 emissions from the soil erosion surfaces and its ensuing suspension within the atmosphere constitute an essential process of soil erosion in the Columbia Plateau.Developing and implementing strategic land management practices on sandy loam soils is therefore necessary to control dust emissions in the Columbia Plateau.
文摘The paper takes the Shanghai-Nanjing expressway as the research subject and takes the samples of the Total Suspended Particulates (TSP) on both sides of the highway as samples to analyze the pollution and the pattern of pollution distribution. The study shows that the concentration of TSP is very high, even six times of the national limit value.
基金supported by the National Natural Science Foundation of China (No. 30670385)
文摘Dry deposition velocity of total suspended particles (TSP) is an effective parameter that describes the speed of atmospheric particulate matter deposit to the natural surface. It is also an important indicator to the capacity of atmosphere self-depuration. However, the spatial and temporal variations in dry deposition velocity of TSP at different urban landscapes and the relationship between dry deposition velocity and the meteorological parameters are subject to large uncertainties. We concurrently investigated this relationship at four different landscapes of Guangzhou, from October to December of 2009. The result of the average dry deposition velocity is (1.49 ± 0.77), (1.44 ± 0.77), (1.13 ±0.53) and (1.82± 0.82) cm/sec for urban commercial landscape, urban forest landscape, urban residential landscape and country landscape, respectively. This spatial variation can be explained by the difference of both particle size composition of TSP and meteorological parameters of sampling sites. Dry deposition velocity of TSP has a positive correlation with wind speed, and a negative correlation with temperature and relative humidity. Wind speed is the strongest factor that affects the magnitude of TSP dry deposition velocity, and the temperature is another considerable strong meteorological factor. We also find out that the relative humidity brings less impact, especially during the dry season. It is thus implied that the current global warming and urban heat island effect may lead to correlative changes in TSP dry deposition velocity, especially in the urban areas.