In classical regression analysis, the error of independent variable is usually not taken into account in regression analysis. This paper presents two solution methods for the case that both the independent and the dep...In classical regression analysis, the error of independent variable is usually not taken into account in regression analysis. This paper presents two solution methods for the case that both the independent and the dependent variables have errors. These methods are derived from the condition-adjustment and indirect-adjustment models based on the Total-Least-Squares principle. The equivalence of these two methods is also proven in theory.展开更多
基金supported by the National Nature Science Foundation of China (41174009)
文摘In classical regression analysis, the error of independent variable is usually not taken into account in regression analysis. This paper presents two solution methods for the case that both the independent and the dependent variables have errors. These methods are derived from the condition-adjustment and indirect-adjustment models based on the Total-Least-Squares principle. The equivalence of these two methods is also proven in theory.