This paper studies the thermal effect of the cable-stayed bridge tower based on full time accurate measurement and finite element analysis on Xiantao Hanjiang River Highway Bridge. The measured results and the displac...This paper studies the thermal effect of the cable-stayed bridge tower based on full time accurate measurement and finite element analysis on Xiantao Hanjiang River Highway Bridge. The measured results and the displacement variation of top tower show that the tower rotates periodically when it is exposed in sunshine. But the tower column will not decline when there is no sunshine. In spite of in winter or in summer, the period when the tower column changed smallest is from 0∶00 am to 5∶00 am. The time period when the tower column has maximum deviation lags behind the time when the tower column has maximum temperature difference, and this phenomenon is obvious in winter. The conclusions also have directive value in predicting the tower deformations and their directions in construction control of cable-stayed bridge, and in verifying the finite element program.展开更多
To overcome the problems of natural decreases in power quality,and to eliminate wind speed fluctuation due to wind shear and tower shadow effect arising from wind turbine structural parameters,an improved prediction m...To overcome the problems of natural decreases in power quality,and to eliminate wind speed fluctuation due to wind shear and tower shadow effect arising from wind turbine structural parameters,an improved prediction model accounting for the dual effect of wind shear and tower shadow is,in this paper,built.Compared to the conventional prediction model,the proposed model contains a new constraint condition,which makes the disturbance term caused by the tower shadow effect always negative so that the prediction result is closer to the actual situation.Furthermore,wind turbine structural parameters such as hub height,rotor diameter,the diameter of the tower top,and rotor overhang on wind shear and tower shadow effect are also explored in detail.The results show that the wind shear effect became weaker with the increase in hub height.The hub height is independent of the tower shadow effect.The rotor diameter is positively correlated with the wind shear and tower shadow effect.The tower shadow effect is positively correlated with the diameter of the tower top and negatively correlated with the rotor overhang.展开更多
The comprehensive numerical simulation of the tower shadow effect on floating offshore wind turbines(FOWTs),an area less explored compared to fixed-bottom wind turbines,is presented in this study.The atmospheric bound...The comprehensive numerical simulation of the tower shadow effect on floating offshore wind turbines(FOWTs),an area less explored compared to fixed-bottom wind turbines,is presented in this study.The atmospheric boundary layer inflow and the joint north sea wave project random wave are used as the operating conditions for FOWT.The combination of computational fluid dynamics(CFD)software simulator for wind farm applications and turbine simulation tool OpenFAST is used to implement fluid-structure interaction calculations.The output power,platform motion,wake velocity deficit and vortex structures are analyzed to reveal the influence of the tower shadow effect on the FOWT.The results indicate that due to the fluctuation caused by the turbulent wind and the floating platform motion,the tower shadow effect of FOWT is less significant for its periodic power decay than that of fixed-bottom wind turbines.And according to the velocity deficit analysis,the influence area of the tower shadow effect on the wake is mainly in the near wake region.展开更多
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ...A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.展开更多
文摘This paper studies the thermal effect of the cable-stayed bridge tower based on full time accurate measurement and finite element analysis on Xiantao Hanjiang River Highway Bridge. The measured results and the displacement variation of top tower show that the tower rotates periodically when it is exposed in sunshine. But the tower column will not decline when there is no sunshine. In spite of in winter or in summer, the period when the tower column changed smallest is from 0∶00 am to 5∶00 am. The time period when the tower column has maximum deviation lags behind the time when the tower column has maximum temperature difference, and this phenomenon is obvious in winter. The conclusions also have directive value in predicting the tower deformations and their directions in construction control of cable-stayed bridge, and in verifying the finite element program.
基金funded by the National Natural Science Foundation of China(51866012).
文摘To overcome the problems of natural decreases in power quality,and to eliminate wind speed fluctuation due to wind shear and tower shadow effect arising from wind turbine structural parameters,an improved prediction model accounting for the dual effect of wind shear and tower shadow is,in this paper,built.Compared to the conventional prediction model,the proposed model contains a new constraint condition,which makes the disturbance term caused by the tower shadow effect always negative so that the prediction result is closer to the actual situation.Furthermore,wind turbine structural parameters such as hub height,rotor diameter,the diameter of the tower top,and rotor overhang on wind shear and tower shadow effect are also explored in detail.The results show that the wind shear effect became weaker with the increase in hub height.The hub height is independent of the tower shadow effect.The rotor diameter is positively correlated with the wind shear and tower shadow effect.The tower shadow effect is positively correlated with the diameter of the tower top and negatively correlated with the rotor overhang.
基金supported by the Key Laboratory of Ministry of Education for Coastal Disaster and Protection,Hohai University(Grant No.J202202)the National Natural Science Foundation of China(Grant No.11872174)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.B200202236)the Key Laboratory of Port,Waterway&Sedimentation Engineering Ministry of Communications,PRC(Grant No.Yk220001-2).
文摘The comprehensive numerical simulation of the tower shadow effect on floating offshore wind turbines(FOWTs),an area less explored compared to fixed-bottom wind turbines,is presented in this study.The atmospheric boundary layer inflow and the joint north sea wave project random wave are used as the operating conditions for FOWT.The combination of computational fluid dynamics(CFD)software simulator for wind farm applications and turbine simulation tool OpenFAST is used to implement fluid-structure interaction calculations.The output power,platform motion,wake velocity deficit and vortex structures are analyzed to reveal the influence of the tower shadow effect on the FOWT.The results indicate that due to the fluctuation caused by the turbulent wind and the floating platform motion,the tower shadow effect of FOWT is less significant for its periodic power decay than that of fixed-bottom wind turbines.And according to the velocity deficit analysis,the influence area of the tower shadow effect on the wake is mainly in the near wake region.
基金supported by the National Natural Science Foundation of China(Grant No.52078010)Beijing Natural Science Foundation(Grant No.JQ19029).
文摘A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.