A new method was presented to discuss the respective roles of short- and long-range interactions in protein folding. It's based on an off-lattice model, which is also being called as toy model. Simulated annealing...A new method was presented to discuss the respective roles of short- and long-range interactions in protein folding. It's based on an off-lattice model, which is also being called as toy model. Simulated annealing algorithm was used to search its native conformation. When it is applied to analysis proteins 1agt and 1aho, we find that helical segment cannot fold into native conformation without the influence of long-range interactions. That's to say that long-range interactions are the main determinants in protein folding. Key words toy model - protein folding - simulated annealing algorithm - short and long range interactions CLC number O 242.28 - Q71 Foundation item: Supported by the National Natural Science Foundation of China((60301009)Biography: WANG Long-hui (1976-), female, Ph. D candidate, research direction: machine learning, bioinformatics.展开更多
A half-harmonic oscillator, which gets its name because the position coordinate is strictly positive, has been quantized and determined that it was a physically correct quantization. This positive result was found usi...A half-harmonic oscillator, which gets its name because the position coordinate is strictly positive, has been quantized and determined that it was a physically correct quantization. This positive result was found using affine quantization (AQ). The main purpose of this paper is to compare results of this new quantization procedure with those of canonical quantization (CQ). Using Ashtekar-like classical variables and CQ, we quantize the same toy model. While these two quantizations lead to different results, they both would reduce to the same classical Hamiltonian if ħ→ 0. Since these two quantizations have differing results, only one of the quantizations can be physically correct. Two brief sections also illustrate how AQ can correctly help quantum gravity and the quantization of most field theory problems.展开更多
A simple‘toy’model of productivity and nitrogen and phosphorus cycling was used to evaluate how the increasing temporal variation in precipitation that is predicted(and observed)to occur as a consequence of greenhou...A simple‘toy’model of productivity and nitrogen and phosphorus cycling was used to evaluate how the increasing temporal variation in precipitation that is predicted(and observed)to occur as a consequence of greenhouse-gasinduced climate change will affect crop yields and losses of reactive N that can cause environmental damage and affect human health.The model predicted that as temporal variability in precipitation increased it progressively reduced yields and increased losses of reactive N by disrupting the synchrony between N supply and plant N uptake.Also,increases in the temporal variation of precipitation increased the frequency of floods and droughts.Predictions of this model indicate that climate-change-driven increases in temporal variation in precipitation in rainfed agricultural ecosystems will make it difficult to sustain cropping systems that are both high-yielding and have small environmental and human-health footprints.展开更多
文摘A new method was presented to discuss the respective roles of short- and long-range interactions in protein folding. It's based on an off-lattice model, which is also being called as toy model. Simulated annealing algorithm was used to search its native conformation. When it is applied to analysis proteins 1agt and 1aho, we find that helical segment cannot fold into native conformation without the influence of long-range interactions. That's to say that long-range interactions are the main determinants in protein folding. Key words toy model - protein folding - simulated annealing algorithm - short and long range interactions CLC number O 242.28 - Q71 Foundation item: Supported by the National Natural Science Foundation of China((60301009)Biography: WANG Long-hui (1976-), female, Ph. D candidate, research direction: machine learning, bioinformatics.
文摘A half-harmonic oscillator, which gets its name because the position coordinate is strictly positive, has been quantized and determined that it was a physically correct quantization. This positive result was found using affine quantization (AQ). The main purpose of this paper is to compare results of this new quantization procedure with those of canonical quantization (CQ). Using Ashtekar-like classical variables and CQ, we quantize the same toy model. While these two quantizations lead to different results, they both would reduce to the same classical Hamiltonian if ħ→ 0. Since these two quantizations have differing results, only one of the quantizations can be physically correct. Two brief sections also illustrate how AQ can correctly help quantum gravity and the quantization of most field theory problems.
基金supported by a US National Science Foundation grant(2027290)awarded to Stanford University。
文摘A simple‘toy’model of productivity and nitrogen and phosphorus cycling was used to evaluate how the increasing temporal variation in precipitation that is predicted(and observed)to occur as a consequence of greenhouse-gasinduced climate change will affect crop yields and losses of reactive N that can cause environmental damage and affect human health.The model predicted that as temporal variability in precipitation increased it progressively reduced yields and increased losses of reactive N by disrupting the synchrony between N supply and plant N uptake.Also,increases in the temporal variation of precipitation increased the frequency of floods and droughts.Predictions of this model indicate that climate-change-driven increases in temporal variation in precipitation in rainfed agricultural ecosystems will make it difficult to sustain cropping systems that are both high-yielding and have small environmental and human-health footprints.