Remarkable progress has occurred in many branches of biology and health sciences during the last few decades. Trace element (TE) research has definitely shared in this explosion of scientific knowledge. Due to the imp...Remarkable progress has occurred in many branches of biology and health sciences during the last few decades. Trace element (TE) research has definitely shared in this explosion of scientific knowledge. Due to the improvements in analytical technology, the discovery of TEs in organism was realized. The developments of TE research have been promoted by the demand of public health (e.g. deficiency or toxicity). The profound knowledge of nutritional importance of TEs has been achieved with application of advanced methods in biological, medical and chemical fields, etc. In this paper, a new definition of essentiality of TEs is introduced. According to this definition, onIy ten TEs (Fe, Zn, F, Cu, I, Se, Mn, Mo, Cr, Co) are considered to be essential to humans. The others need more evidence to prove their essentiality in humans. The recent progress on the biochemical and immunological functions of TEs and on the roles of TEs in brain development are briefly described. The TEs, mainly Se, I, Zn, Fe, are more closely related to public health. Also, emphases are laid on balancing all nutrients when new knowledge of essential TEs is applied in public health展开更多
The consumption of contaminated river water can have severe effects on human health.This study aims to investigate the trace elements(TEs)content and their health risk assessment in the Badigad River Basin in the less...The consumption of contaminated river water can have severe effects on human health.This study aims to investigate the trace elements(TEs)content and their health risk assessment in the Badigad River Basin in the lesser Himalayas of Nepal.In total,44 water samples were collected from 22 different sites during the pre-monsoon and monsoon seasons,and 25 TEs were analyzed.Correlation matrix and principal component analysis(PCA)were used to analyze the potential relationship between the measured TEs and their source tracking.Furthermore,the water quality index(WQI),metal index(MI),and cancer index(CI)were evaluated.The TEs content in all samples were found to be within the WHO recommended guideline for drinking and domestic purposes.The dominancy order of the TEs was observed as Sr>Ba>Li>Rb>Zn>Cr>Sc>Mn>Ti>Cu>As>Ni>Co>U>V>Pb>Cs>Ga>Y>Tl>Th>Zr>Bi>Cd>Nb.The PCA analysis suggested that TEs could have natural,anthropogenic,and mixed origins.The WQI indicated that the river water is safe from a human health perspective.The MI suggested that Badigad River can be considered safer for drinking purposes,and the cancer index(CI)showed that all the reported TEs are at low-risk levels.The findings of this study could be useful for government agencies in developing more sustainable water management policies in the region.However,it is suggested that further investigations should be conducted in terms of other hydrogeochemical variables,including major ions,at spatiotemporal levels for the sustainability of the river basin.展开更多
Environmental degradation and unethical human intervention in the natural system has increased the concern for the betterment of healthy living. The deterioration of aquatic system is commonplace in the developing wor...Environmental degradation and unethical human intervention in the natural system has increased the concern for the betterment of healthy living. The deterioration of aquatic system is commonplace in the developing world. The present paper shows the trace elements (Ni, Zn, Fe, Pb, Cd, Co, Cu and Mn) concentrations in the drinking water of Aligarh city and their possible effect on the health of the inhabitants. The higher concen- tration of some elements in the drinking water and the poor health of inhabitants are found correlated. The statistical analysis of the data shows positive correlation between some elements. The principal component analysis of the data gives four factors with significance level of 42%, 29%, 15% and 12% respectively.展开更多
This study focuses on the dietary exposure of trace elements (TEs) through the intake of various agricultural products grown in greenhouse, and its corresponding health risks at different age categories in Korean popu...This study focuses on the dietary exposure of trace elements (TEs) through the intake of various agricultural products grown in greenhouse, and its corresponding health risks at different age categories in Korean population. It was observed that the mean contents of TEs found in selected agricultural products were well below their guidelines. Mean and 95th percentile intake estimates of TEs were ranged from 0.02 to that considerable attention should be paid to the potential health risks of TEs through intake of various foodstuffs and other exposure pathways.展开更多
Trace elements constitute less than 1% of the rocks in the crust (Stumm and Morgan, 1991). In the human body, they constitute less than 100 mg/kg (0.01%). These elements are released to the environment naturally by we...Trace elements constitute less than 1% of the rocks in the crust (Stumm and Morgan, 1991). In the human body, they constitute less than 100 mg/kg (0.01%). These elements are released to the environment naturally by weathering and volcanic activities (Flint and skinner, 1997). It has been observed that trace elements are greatly absorbed and retained in the body when in liquid diet. This phenomenon also influences the risk to human health, especially of infants and children whose immature digestive system further promote absorption of toxic heavy metals. The study was based on the analysis of domestic borehole water supplies in Huruma estate of Eldoret Municipality for selected trace elements and their implications on human health. The boreholes were systematically selected for sampling points and trace elements, Cr, Cu and Se analyzed using AAS. Statistical analysis for mean, standard deviation and confidence interval limits was done using SPSS. The statistical t-test was used to test for significance differences at (p = 0.05). The graphs were drawn using the Microsoft Excel package. The resulting data obtained from analysis were compared with WHO data for drinking water. In the study, the mean values of the following parameters were as follows: Chromium 17.9 μg/L, Copper 563 μg/L and Selenium 22.7 μg/L. There was a significant difference at 5% level of significance (p = 0.000) in all the parameter values among the sampling points in Huruma estate. The above mean values were far below the WHO recommended limits for drinking water. It was concluded that the borehole water from Huruma was fit for drinking and therefore could not cause cancer and cardiovascular diseases. However, borehole water should be used if other water sources (tap water etc.) were not available. All the industries near Huruma estate should carefully analyze and regularly monitor their liquid waste effluents to ensure that no harmful discharges get into the soil.展开更多
The effects of airborne particulate matter (PM) trace elements on health are widely concerned nowadays. Many achievements have been made while many unknowns exist. This article reports the recent research progresses...The effects of airborne particulate matter (PM) trace elements on health are widely concerned nowadays. Many achievements have been made while many unknowns exist. This article reports the recent research progresses, describes the effects of exposure to PM trace elements on health epidemiological evidence, toxicology findings, and raises some questions for future studies.展开更多
To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As...To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As,Sn,Ba,Pb)in PM_(2.5)were monitored from December 2020 to November 2021 in a representative city,Xiamen.The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K,Fe,Al,Ca and Zn.Based on Positive Matrix Factorization analysis,source appointment revealed that the major sources of trace elements in Xiamen were traffic,dust,biomass and firework combustion,industrial manufacture and shipping emission.According to health risk assessment combined with the source appointment results,it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals(Cr,Ni,As,Pb)exceeded the threshold(10^(-6)).Traffic-related source had almost half amount of contribution to the health risk induced by PM_(2.5)-bound trace elements.During the dust transport period or Spring Festival period,the health risks exceeded an acceptable threshold even an order of magnitude higher,suggesting that the serious health risks still existed in low PM_(2.5)environment at certain times.Health risk assessment reminded that the health risk reduction in PM_(2.5)at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.展开更多
In the world energy about 26% of all was derived from coal combustion. Nearly 80% of the electricity produced in China is generated from coal. Coal will play the most important role in the coming 50 years as the past ...In the world energy about 26% of all was derived from coal combustion. Nearly 80% of the electricity produced in China is generated from coal. Coal will play the most important role in the coming 50 years as the past century in China. However one consequentially of the mining and combustion of coal is the mobilization of trace elements, especially trace metals, which have environmental and human health significance. Information on concentrations and distributions of potentially toxic elements in coal, and information on the modes of occurrence of these elements and the relations of the minerals in coal can help to predict the behavior of the potentially toxic trace metals during cleaning, combustion, weathering, and leaching.展开更多
To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and correspo...To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and corresponding subsoil samples)were collected from the five representative land-use patterns.Inductively coupled plasma mass spectrometry(ICP-MS),Atomic fluorescence spectrometry(AFS),and Inductively coupled plasma optical emission spectrometry(ICP-OES)were used to determine the content of PTEs(As,Cd,Hg,Cu,Cr,Ni,Pb,Zn,Co,Mo,Sb,and V).Correlation analysis and factor analysis were used to determine the source of PTEs.Geo-accumulation index(I_(geo)),hazard quotient(HQ),and total carcinogenic risk index(TR)were used to measure the PTEs contamination and its relative health impacts.Results showed that the average values of 12 PTEs in topsoil were higher than the Hainan soil geochemical baseline,showing different degrees of PTEs accumulation effect.The concentration of PTEs in the topsoil was lower than those in the subsoil except for Cd and Hg.The I_(geo)revealed that the major accumulated element in soils was As followed by Mo.Source apportionment suggested that parent materials and agricultural practices were the dominant factors for PTEs accumulation in the topsoil.Noncarcinogenic risks of soil samples from five land-use patterns presented a trend of paddy field>dry field>woodland>orchard>garden plot.However,the HQ values of 12 PTEs were less than the recommended limit of HQ=1,representing that there are no non-carcinogenic risks of PTEs for children and adults in the study area.The TR values are within 6.95×10^(-6)-1.38×10^(-5),which corresponds to the low level.Therefore the PTEs in the agricultural soil of the study area show little influence on the health status of the local population.展开更多
Assessing the concentration of trace elements in aquifers is increasingly subjected to study in Iran due to the lack of groundwater resources. This study was undertaken with the objective of determining trace elements...Assessing the concentration of trace elements in aquifers is increasingly subjected to study in Iran due to the lack of groundwater resources. This study was undertaken with the objective of determining trace elements in the alluvial aquifer located in the southern part of the Rafsanjan plain, Kerman province, Iran. The total of 73 groundwater samples from individual water wells were analyzed by atomic absorption spectroscopy (AAS). Results showed that the levels of As, Hg, Pb, Al, Fe, Cr, Ni, and Cd elements were above the World Health Organization standards for drinking-water in some parts of the plain. Thus, statistical data analyses and spatial distribution interpretation were performed to identify the main sources of the pollution. A health risk assessment model derived from US environmental protection agency was applied to calculate the cumulative exposure to As as well as toxic and carcinogenic risks caused by drinking contaminated raw groundwater. Results show that residents of some part of region may suffer from significant adverse toxic health impacts and are exposed to drinking water with As concentrations.展开更多
The main objective of this study was to evaluate eight kinds of trace element pollutants in groundwater from a typical coal mine area,and carry out a corresponding health risk assessment for the local populace.To do t...The main objective of this study was to evaluate eight kinds of trace element pollutants in groundwater from a typical coal mine area,and carry out a corresponding health risk assessment for the local populace.To do this,34 shallow groundwater(SG)samples and 18 mid-layer groundwater(MG)samples were collected from the Sulin mining area.To minimize the uncertainties in the health risk assessment,this paper relied on Monte Carlo simulations and sensitivity analysis.The results revealed that Sr and Mn contents exceeded their corresponding WHO(Guidelines for drinking water quality,4th edn.Geneva,2011)guidelines and Chinese groundwater standards(GB/T14848-2017),while the other analyzed trace elements remain below those threshold values.The calculated hazard quotient and hazard index values for adults from ingestion exposure to SG and MG were well below the threshold limit of 1.Probabilistic simulations further show that the total cancer risk value above the limit of 1×10^(-6) is 0%for SG and 29.39%for MG.Sensitivity analysis identified the Sr and Cr contents as the most relevant element variables affecting the probabilistic non-carcinogenic and carcinogenic risk values in the model,respectively.展开更多
The Luapula River has received mining discharges from Lubumbashi and Kipushi Gecamines for several decades and from the CHEMAF company since 2005. It also received mining waste from SODIMICO. The Luapula River has Lak...The Luapula River has received mining discharges from Lubumbashi and Kipushi Gecamines for several decades and from the CHEMAF company since 2005. It also received mining waste from SODIMICO. The Luapula River has Lake Banguelo as its source in Zambia and flows into Lake Moero, which is located on the border between Zambia and the Democratic Republic of Congo. The objective of this study is to assess the health safety of the fish from the Luapula River. Fish samples were collected in August 2015 at the site of the locality of Kasenga located downstream of the mining activities (n = 14) and presumed to be polluted. On the other hand, reference fish samples were taken upstream of any mining activity of the Panda, Kasungwe and Congo Rivers at the sections located near their sources and presumed not to be polluted by mining wastes. (n = 11). Ten Metal Trace Elements (MTE) were assayed at the laboratory of the Congolese Control Office (OCC) of Lubumbashi and at the laboratory of the Catholic University of Leuven in Belgium using ICP-OES and ICP-MS. To assess and evaluate the health safety of fish from the Luapula River, the concentrations of fish samples from the Luapula River were compared with the concentrations of the reference fish samples from the Panda Kasungwe and Congo rivers by the Wilcoxon test. The concentrations of fish samples from the Congo River were also compared with the maximum acceptable metal trace element concentrations established by the FAO, WHO, EU (European Union) and other regulatory bodies. as reported by Akoto et al. The results of this study showed that the fish from the Luapula River is contaminated in Cd, Cu, Ni and Pb, and are not fit for human consumption. The results obtained will be brought to attention of the decision-makers of the Province of Haut-Katanga, so that measures can be taken to ban metallurgical factories to drump their mining wastes into waterways.展开更多
文摘Remarkable progress has occurred in many branches of biology and health sciences during the last few decades. Trace element (TE) research has definitely shared in this explosion of scientific knowledge. Due to the improvements in analytical technology, the discovery of TEs in organism was realized. The developments of TE research have been promoted by the demand of public health (e.g. deficiency or toxicity). The profound knowledge of nutritional importance of TEs has been achieved with application of advanced methods in biological, medical and chemical fields, etc. In this paper, a new definition of essentiality of TEs is introduced. According to this definition, onIy ten TEs (Fe, Zn, F, Cu, I, Se, Mn, Mo, Cr, Co) are considered to be essential to humans. The others need more evidence to prove their essentiality in humans. The recent progress on the biochemical and immunological functions of TEs and on the roles of TEs in brain development are briefly described. The TEs, mainly Se, I, Zn, Fe, are more closely related to public health. Also, emphases are laid on balancing all nutrients when new knowledge of essential TEs is applied in public health
文摘The consumption of contaminated river water can have severe effects on human health.This study aims to investigate the trace elements(TEs)content and their health risk assessment in the Badigad River Basin in the lesser Himalayas of Nepal.In total,44 water samples were collected from 22 different sites during the pre-monsoon and monsoon seasons,and 25 TEs were analyzed.Correlation matrix and principal component analysis(PCA)were used to analyze the potential relationship between the measured TEs and their source tracking.Furthermore,the water quality index(WQI),metal index(MI),and cancer index(CI)were evaluated.The TEs content in all samples were found to be within the WHO recommended guideline for drinking and domestic purposes.The dominancy order of the TEs was observed as Sr>Ba>Li>Rb>Zn>Cr>Sc>Mn>Ti>Cu>As>Ni>Co>U>V>Pb>Cs>Ga>Y>Tl>Th>Zr>Bi>Cd>Nb.The PCA analysis suggested that TEs could have natural,anthropogenic,and mixed origins.The WQI indicated that the river water is safe from a human health perspective.The MI suggested that Badigad River can be considered safer for drinking purposes,and the cancer index(CI)showed that all the reported TEs are at low-risk levels.The findings of this study could be useful for government agencies in developing more sustainable water management policies in the region.However,it is suggested that further investigations should be conducted in terms of other hydrogeochemical variables,including major ions,at spatiotemporal levels for the sustainability of the river basin.
文摘Environmental degradation and unethical human intervention in the natural system has increased the concern for the betterment of healthy living. The deterioration of aquatic system is commonplace in the developing world. The present paper shows the trace elements (Ni, Zn, Fe, Pb, Cd, Co, Cu and Mn) concentrations in the drinking water of Aligarh city and their possible effect on the health of the inhabitants. The higher concen- tration of some elements in the drinking water and the poor health of inhabitants are found correlated. The statistical analysis of the data shows positive correlation between some elements. The principal component analysis of the data gives four factors with significance level of 42%, 29%, 15% and 12% respectively.
文摘This study focuses on the dietary exposure of trace elements (TEs) through the intake of various agricultural products grown in greenhouse, and its corresponding health risks at different age categories in Korean population. It was observed that the mean contents of TEs found in selected agricultural products were well below their guidelines. Mean and 95th percentile intake estimates of TEs were ranged from 0.02 to that considerable attention should be paid to the potential health risks of TEs through intake of various foodstuffs and other exposure pathways.
文摘Trace elements constitute less than 1% of the rocks in the crust (Stumm and Morgan, 1991). In the human body, they constitute less than 100 mg/kg (0.01%). These elements are released to the environment naturally by weathering and volcanic activities (Flint and skinner, 1997). It has been observed that trace elements are greatly absorbed and retained in the body when in liquid diet. This phenomenon also influences the risk to human health, especially of infants and children whose immature digestive system further promote absorption of toxic heavy metals. The study was based on the analysis of domestic borehole water supplies in Huruma estate of Eldoret Municipality for selected trace elements and their implications on human health. The boreholes were systematically selected for sampling points and trace elements, Cr, Cu and Se analyzed using AAS. Statistical analysis for mean, standard deviation and confidence interval limits was done using SPSS. The statistical t-test was used to test for significance differences at (p = 0.05). The graphs were drawn using the Microsoft Excel package. The resulting data obtained from analysis were compared with WHO data for drinking water. In the study, the mean values of the following parameters were as follows: Chromium 17.9 μg/L, Copper 563 μg/L and Selenium 22.7 μg/L. There was a significant difference at 5% level of significance (p = 0.000) in all the parameter values among the sampling points in Huruma estate. The above mean values were far below the WHO recommended limits for drinking water. It was concluded that the borehole water from Huruma was fit for drinking and therefore could not cause cancer and cardiovascular diseases. However, borehole water should be used if other water sources (tap water etc.) were not available. All the industries near Huruma estate should carefully analyze and regularly monitor their liquid waste effluents to ensure that no harmful discharges get into the soil.
文摘The effects of airborne particulate matter (PM) trace elements on health are widely concerned nowadays. Many achievements have been made while many unknowns exist. This article reports the recent research progresses, describes the effects of exposure to PM trace elements on health epidemiological evidence, toxicology findings, and raises some questions for future studies.
基金supported by the National Natural Science Foundation of China(No.U22A20578)the Science and Technology Department of Fujian Province(No.2022L3025)+3 种基金the Center for Excellence in Regional Atmospheric Environment Project(No.E0L1B20201)the Chaozhou Science and Technology Plan Project(No.2018GY03)Xiamen Atmospheric Environment Observation and Research Station of Fujian ProvinceFujian Key Laboratory of Atmospheric Ozone Pollution Prevention(Institute of Urban Environment,Chinese Academy of Sciences)。
文摘To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As,Sn,Ba,Pb)in PM_(2.5)were monitored from December 2020 to November 2021 in a representative city,Xiamen.The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K,Fe,Al,Ca and Zn.Based on Positive Matrix Factorization analysis,source appointment revealed that the major sources of trace elements in Xiamen were traffic,dust,biomass and firework combustion,industrial manufacture and shipping emission.According to health risk assessment combined with the source appointment results,it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals(Cr,Ni,As,Pb)exceeded the threshold(10^(-6)).Traffic-related source had almost half amount of contribution to the health risk induced by PM_(2.5)-bound trace elements.During the dust transport period or Spring Festival period,the health risks exceeded an acceptable threshold even an order of magnitude higher,suggesting that the serious health risks still existed in low PM_(2.5)environment at certain times.Health risk assessment reminded that the health risk reduction in PM_(2.5)at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No 40 2 72 12 4,49872 0 5 4)
文摘In the world energy about 26% of all was derived from coal combustion. Nearly 80% of the electricity produced in China is generated from coal. Coal will play the most important role in the coming 50 years as the past century in China. However one consequentially of the mining and combustion of coal is the mobilization of trace elements, especially trace metals, which have environmental and human health significance. Information on concentrations and distributions of potentially toxic elements in coal, and information on the modes of occurrence of these elements and the relations of the minerals in coal can help to predict the behavior of the potentially toxic trace metals during cleaning, combustion, weathering, and leaching.
基金supported by Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2023KFKTB001)the Science&Technology Fundamental Resources Investigation Program(2022FY101800)+2 种基金the National Nonprofit Institute Research Grant of IGGE(AS2023D01)the projects of the China Geological Survey(DD20230309 and DD20190305)the National Natural Science Foundation of China(42002105)。
文摘To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and corresponding subsoil samples)were collected from the five representative land-use patterns.Inductively coupled plasma mass spectrometry(ICP-MS),Atomic fluorescence spectrometry(AFS),and Inductively coupled plasma optical emission spectrometry(ICP-OES)were used to determine the content of PTEs(As,Cd,Hg,Cu,Cr,Ni,Pb,Zn,Co,Mo,Sb,and V).Correlation analysis and factor analysis were used to determine the source of PTEs.Geo-accumulation index(I_(geo)),hazard quotient(HQ),and total carcinogenic risk index(TR)were used to measure the PTEs contamination and its relative health impacts.Results showed that the average values of 12 PTEs in topsoil were higher than the Hainan soil geochemical baseline,showing different degrees of PTEs accumulation effect.The concentration of PTEs in the topsoil was lower than those in the subsoil except for Cd and Hg.The I_(geo)revealed that the major accumulated element in soils was As followed by Mo.Source apportionment suggested that parent materials and agricultural practices were the dominant factors for PTEs accumulation in the topsoil.Noncarcinogenic risks of soil samples from five land-use patterns presented a trend of paddy field>dry field>woodland>orchard>garden plot.However,the HQ values of 12 PTEs were less than the recommended limit of HQ=1,representing that there are no non-carcinogenic risks of PTEs for children and adults in the study area.The TR values are within 6.95×10^(-6)-1.38×10^(-5),which corresponds to the low level.Therefore the PTEs in the agricultural soil of the study area show little influence on the health status of the local population.
文摘Assessing the concentration of trace elements in aquifers is increasingly subjected to study in Iran due to the lack of groundwater resources. This study was undertaken with the objective of determining trace elements in the alluvial aquifer located in the southern part of the Rafsanjan plain, Kerman province, Iran. The total of 73 groundwater samples from individual water wells were analyzed by atomic absorption spectroscopy (AAS). Results showed that the levels of As, Hg, Pb, Al, Fe, Cr, Ni, and Cd elements were above the World Health Organization standards for drinking-water in some parts of the plain. Thus, statistical data analyses and spatial distribution interpretation were performed to identify the main sources of the pollution. A health risk assessment model derived from US environmental protection agency was applied to calculate the cumulative exposure to As as well as toxic and carcinogenic risks caused by drinking contaminated raw groundwater. Results show that residents of some part of region may suffer from significant adverse toxic health impacts and are exposed to drinking water with As concentrations.
基金The authors sincerely thank the manuscript handling editors and reviewers for their insightful comments that helped to greatly improve this paper.This study was financially supported by the National Natural Science Foundation of China(41773100)the Natural Science Foundation of Anhui Province(2008085QD192)+5 种基金the Key Project of Excellent Talents support program in colleges and universities(gxyqZD2020048)a doctoral research initiation fund Project(2020BS010)a postdoctoral research initiation fund project(2021BSH001)the fourth batch of excellent academic and technical backbone Projects of Suzhou University(2020XJGG02)the Research Project of Wanbei Coal-Electricity Group Co.Ltd.(2020)and the Project for research activities of academic and technological leaders of Anhui Province(2020D239).
文摘The main objective of this study was to evaluate eight kinds of trace element pollutants in groundwater from a typical coal mine area,and carry out a corresponding health risk assessment for the local populace.To do this,34 shallow groundwater(SG)samples and 18 mid-layer groundwater(MG)samples were collected from the Sulin mining area.To minimize the uncertainties in the health risk assessment,this paper relied on Monte Carlo simulations and sensitivity analysis.The results revealed that Sr and Mn contents exceeded their corresponding WHO(Guidelines for drinking water quality,4th edn.Geneva,2011)guidelines and Chinese groundwater standards(GB/T14848-2017),while the other analyzed trace elements remain below those threshold values.The calculated hazard quotient and hazard index values for adults from ingestion exposure to SG and MG were well below the threshold limit of 1.Probabilistic simulations further show that the total cancer risk value above the limit of 1×10^(-6) is 0%for SG and 29.39%for MG.Sensitivity analysis identified the Sr and Cr contents as the most relevant element variables affecting the probabilistic non-carcinogenic and carcinogenic risk values in the model,respectively.
文摘The Luapula River has received mining discharges from Lubumbashi and Kipushi Gecamines for several decades and from the CHEMAF company since 2005. It also received mining waste from SODIMICO. The Luapula River has Lake Banguelo as its source in Zambia and flows into Lake Moero, which is located on the border between Zambia and the Democratic Republic of Congo. The objective of this study is to assess the health safety of the fish from the Luapula River. Fish samples were collected in August 2015 at the site of the locality of Kasenga located downstream of the mining activities (n = 14) and presumed to be polluted. On the other hand, reference fish samples were taken upstream of any mining activity of the Panda, Kasungwe and Congo Rivers at the sections located near their sources and presumed not to be polluted by mining wastes. (n = 11). Ten Metal Trace Elements (MTE) were assayed at the laboratory of the Congolese Control Office (OCC) of Lubumbashi and at the laboratory of the Catholic University of Leuven in Belgium using ICP-OES and ICP-MS. To assess and evaluate the health safety of fish from the Luapula River, the concentrations of fish samples from the Luapula River were compared with the concentrations of the reference fish samples from the Panda Kasungwe and Congo rivers by the Wilcoxon test. The concentrations of fish samples from the Congo River were also compared with the maximum acceptable metal trace element concentrations established by the FAO, WHO, EU (European Union) and other regulatory bodies. as reported by Akoto et al. The results of this study showed that the fish from the Luapula River is contaminated in Cd, Cu, Ni and Pb, and are not fit for human consumption. The results obtained will be brought to attention of the decision-makers of the Province of Haut-Katanga, so that measures can be taken to ban metallurgical factories to drump their mining wastes into waterways.