A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and ge...A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and geodynamic history. Geochemical studies indicate that the gabbro samples are characterized by variable concentrations and low averages of such index elements as Cr (40×10-6–200×10-6; av. 80×10-6), Ni (40×10-6–170×10-6; 53.33×10-6) and Zr (110×10-6–240×10-6; 116.67×10-6); variable and high averages of Rb (3×10-6–270×10-6; 80.67×10-6), Sr (181×10-6–1610×10-6; 628.17×10-6) and U (0.14×10-6–3.46×10-6; 1.51×10-6), and fairly uniform Co (34×10-6–49×10-6; 36.33×10-6) and Sc (23×10-6–39×10-6; 34.5×10-6), while the diorite samples exhibit higher trace element compositions. The range of REE contents and distinctive chondrite-normalized patterns indicate moderate fractionation with slight positive Eu anomaly in the diorites to very low fractionation with flat patterns and slight positive Eu anomaly in the gabbros. However, the general element systematics of the samples, especially LILE (Ba, Rb, Sr, Cs and Pb), HFSE (Zr, Th, U, Hf, Mo, W, Nb and Sn), relatively immobile elements (Zr, Ni, Cr) and REE, suggests a differentiation model, involving fractional crystallization of olivine and clinopyroxene from a partial melt generated beneath an island arc complex. A possible model for the complex is therefore an island arc setting, the development of which was dominated by calc-alkaline magmatism across the Obudu Plateau.展开更多
To evaluate the comprehensive exploitation and utilization values of coal resources in Baise basin of Guangxi, the Paleogene coal of Linchang coal mine were sampled and studied. The enrichment characteristics, occurre...To evaluate the comprehensive exploitation and utilization values of coal resources in Baise basin of Guangxi, the Paleogene coal of Linchang coal mine were sampled and studied. The enrichment characteristics, occurrence modes, and geochemical origin of valuable trace elements in coal were studied by using X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS), polarizing microscope, X-ray fluorescence spectrometry (XRF), inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS). The results reveal that Linchang coal is ultra-low calorific value lignite with high ash, medium sulfur, medium-high moisture and medium volatilization. The minerals are mainly composed of illite, kaolinite, quartz, pyrite, siderite, bassanite, anhydrite and magnesium-containing calcite. Compared with average values for world low-rank coals, the contents of valuable trace elements in Linchang coal are higher on the whole, which is characterized by the high enrichment o<span>f U, the enrichment of elements Li, V and Ag, and the slight enrichment of</span> elements Be, Ga and Se. Lithium, V, Ga and Ag mainly occur in clay minerals including illite and kaolinite, and part of V is related to organic matter. Th<span>e carriers of Be in coal are clay minerals and organic matter. Selenium is </span>mainly combined with organic matter and a small amount exists in pyrite. Uranium is primarily organically bound in coal. The enrichment of valuable trace elements in Linchang coal is influenced by the sedimentary source, coal<span>-forming environment, underground circulating water and geological structure. The sedimentary environment of the coal seam is an acid-reduced terrestrial peat swamp, and the source is Triassic sedimentary rocks weathered f</span>rom feldspathic volcanic rocks around Baise basin.展开更多
The origin of grain dolomite in M55 Member of Ordovician Majiagou Formation in northwestern Ordos Basin was studied by geochemical and petrological tests on core samples.Observation of cores,thin sections and casting ...The origin of grain dolomite in M55 Member of Ordovician Majiagou Formation in northwestern Ordos Basin was studied by geochemical and petrological tests on core samples.Observation of cores,thin sections and casting thin sections,analysis of cathodoluminescence,X-ray diffraction,microscopic sampling of trace elements,laser samplingδ18O andδ13C,and fluid inclusion homogenization temperature were conducted.The results show that the dolomite is the product of recrystallization of micritic to crystal powder dolomite rather than the product of dolomitization of grain limestone.In the spherical grains are residual gypsum and halite pseudo crystals identical with those in the host micritic dolomite.The spherical particles of dolomite has similar trace elements andδ18O andδ13C characteristics to micritic dolomite.Furthermore,Mn/Sr ratio of the fine-medium dolomite between the dolomite grains is about 5-8,while Mn/Sr ratios of calcite in limestone,micritic dolostone in micritic dolomite,and micritic and powdery dolomite are about 0-2,indicating that the dolomite experienced strong diagenesis.Homogenization temperature of inclusions of fine-medium dolomite is about 148.19°C,higher than that of inclusions in micritic to crystal powder dolomite(about 122.60°C),which also supports the conclusion that the grain dolomite experienced burial diagenesis and negative shift ofδ18O andδ13C.Theδ18O,δ13C values of micritic to crystal powder dolomite match with the negative migration,but those of calcite in limestone don’t.It is of great significance to elucidate the genesis of"dolomite recrystallization"for the prediction of such dolomite reservoirs.展开更多
文摘A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and geodynamic history. Geochemical studies indicate that the gabbro samples are characterized by variable concentrations and low averages of such index elements as Cr (40×10-6–200×10-6; av. 80×10-6), Ni (40×10-6–170×10-6; 53.33×10-6) and Zr (110×10-6–240×10-6; 116.67×10-6); variable and high averages of Rb (3×10-6–270×10-6; 80.67×10-6), Sr (181×10-6–1610×10-6; 628.17×10-6) and U (0.14×10-6–3.46×10-6; 1.51×10-6), and fairly uniform Co (34×10-6–49×10-6; 36.33×10-6) and Sc (23×10-6–39×10-6; 34.5×10-6), while the diorite samples exhibit higher trace element compositions. The range of REE contents and distinctive chondrite-normalized patterns indicate moderate fractionation with slight positive Eu anomaly in the diorites to very low fractionation with flat patterns and slight positive Eu anomaly in the gabbros. However, the general element systematics of the samples, especially LILE (Ba, Rb, Sr, Cs and Pb), HFSE (Zr, Th, U, Hf, Mo, W, Nb and Sn), relatively immobile elements (Zr, Ni, Cr) and REE, suggests a differentiation model, involving fractional crystallization of olivine and clinopyroxene from a partial melt generated beneath an island arc complex. A possible model for the complex is therefore an island arc setting, the development of which was dominated by calc-alkaline magmatism across the Obudu Plateau.
文摘To evaluate the comprehensive exploitation and utilization values of coal resources in Baise basin of Guangxi, the Paleogene coal of Linchang coal mine were sampled and studied. The enrichment characteristics, occurrence modes, and geochemical origin of valuable trace elements in coal were studied by using X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS), polarizing microscope, X-ray fluorescence spectrometry (XRF), inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS). The results reveal that Linchang coal is ultra-low calorific value lignite with high ash, medium sulfur, medium-high moisture and medium volatilization. The minerals are mainly composed of illite, kaolinite, quartz, pyrite, siderite, bassanite, anhydrite and magnesium-containing calcite. Compared with average values for world low-rank coals, the contents of valuable trace elements in Linchang coal are higher on the whole, which is characterized by the high enrichment o<span>f U, the enrichment of elements Li, V and Ag, and the slight enrichment of</span> elements Be, Ga and Se. Lithium, V, Ga and Ag mainly occur in clay minerals including illite and kaolinite, and part of V is related to organic matter. Th<span>e carriers of Be in coal are clay minerals and organic matter. Selenium is </span>mainly combined with organic matter and a small amount exists in pyrite. Uranium is primarily organically bound in coal. The enrichment of valuable trace elements in Linchang coal is influenced by the sedimentary source, coal<span>-forming environment, underground circulating water and geological structure. The sedimentary environment of the coal seam is an acid-reduced terrestrial peat swamp, and the source is Triassic sedimentary rocks weathered f</span>rom feldspathic volcanic rocks around Baise basin.
基金Supported by the China National Science and Technology Major Project(2016ZX05050).
文摘The origin of grain dolomite in M55 Member of Ordovician Majiagou Formation in northwestern Ordos Basin was studied by geochemical and petrological tests on core samples.Observation of cores,thin sections and casting thin sections,analysis of cathodoluminescence,X-ray diffraction,microscopic sampling of trace elements,laser samplingδ18O andδ13C,and fluid inclusion homogenization temperature were conducted.The results show that the dolomite is the product of recrystallization of micritic to crystal powder dolomite rather than the product of dolomitization of grain limestone.In the spherical grains are residual gypsum and halite pseudo crystals identical with those in the host micritic dolomite.The spherical particles of dolomite has similar trace elements andδ18O andδ13C characteristics to micritic dolomite.Furthermore,Mn/Sr ratio of the fine-medium dolomite between the dolomite grains is about 5-8,while Mn/Sr ratios of calcite in limestone,micritic dolostone in micritic dolomite,and micritic and powdery dolomite are about 0-2,indicating that the dolomite experienced strong diagenesis.Homogenization temperature of inclusions of fine-medium dolomite is about 148.19°C,higher than that of inclusions in micritic to crystal powder dolomite(about 122.60°C),which also supports the conclusion that the grain dolomite experienced burial diagenesis and negative shift ofδ18O andδ13C.Theδ18O,δ13C values of micritic to crystal powder dolomite match with the negative migration,but those of calcite in limestone don’t.It is of great significance to elucidate the genesis of"dolomite recrystallization"for the prediction of such dolomite reservoirs.