The major elements, trace elements and REEs were analyzed on the samples collected from the sandstone-type uranium deposits in the Ordos Basin to constrain the mechanism of uranium enrichment. The total REE amount ran...The major elements, trace elements and REEs were analyzed on the samples collected from the sandstone-type uranium deposits in the Ordos Basin to constrain the mechanism of uranium enrichment. The total REE amount ranges from 36.7 to 701.8 μg/g and the REE distribution patterns of the sandstone-type uranium samples are characterized by LREE enrichment and high REE depletion. The results also indicated a high Y abundance and Eu anomalies between 0.77-1.81. High-precision ICP-MS results showed that U abundances are within the range of 0.73-150 μg/g, showing some strong correlation between U enrichment and related elements such as Ti, V, Zr, Mo, and Au. In addition, Th abundance is correlated with ΣREE.展开更多
IEA-R1 nuclear reactor operation has the routine to control uranium content in pool water to be in trace range below 50 μg/L. There are several routes to determine the uranium trace content in water in the lite...IEA-R1 nuclear reactor operation has the routine to control uranium content in pool water to be in trace range below 50 μg/L. There are several routes to determine the uranium trace content in water in the literature;voltammetry has been systematically employed. In the present study, the chosen chemical determination of uranium traces used the voltammetric method known as AdCSV (adsorptive cathodic stripping voltammetry). This technique, based on mercury voltammetry, is an adequate methodology to determine uranium traces. The chloranilic acid [CAA] (2,5-dichloro-3,6-dihydroxy-1,4-benzo-quinone) is indicated as chelating agent. The redox reaction of UO2+2?with CAA is sensitive in the range of 2 2(CAA)2] reduction potential. In this work, we present the uranium trace results for IEA-R1 reactor water, sampled after an operation routine shutdown. The uranium trace determination for IEA-R1 pool water showed content around 1 μg/L [U] with statistical significance. Therefore the IEA-R1-reactor-water purification showed to be adequate and safe.展开更多
This paper summarizes the results of the coprecipitation of ultramicrogram uranium with Fe(OH)<sub>3</sub> from saturated NaCl solution and separation of uranium from Fe(Ⅲ) by solvent extraction with ...This paper summarizes the results of the coprecipitation of ultramicrogram uranium with Fe(OH)<sub>3</sub> from saturated NaCl solution and separation of uranium from Fe(Ⅲ) by solvent extraction with TBP as extractant. In the first step, the coprecipitation efficiency of uranium is more than 95%; in the second step, extraction percentage of uranium is more than 98%, and stripping efficiency of uranium is nearly 100% (twice stripping) and separation factor (separation of Fe(Ⅲ) from uranium) is more than 10<sup>3</sup>.展开更多
基金This study is supported by the Chinese 973 National Key Research and Development Program (2003CB214606) on Accumulation and Formation of Multi-Energy Mineral Deposits Coexisting in the same Basin and Open Foundation of the State Laboratory of Geological Processes and Mineral Resources.
文摘The major elements, trace elements and REEs were analyzed on the samples collected from the sandstone-type uranium deposits in the Ordos Basin to constrain the mechanism of uranium enrichment. The total REE amount ranges from 36.7 to 701.8 μg/g and the REE distribution patterns of the sandstone-type uranium samples are characterized by LREE enrichment and high REE depletion. The results also indicated a high Y abundance and Eu anomalies between 0.77-1.81. High-precision ICP-MS results showed that U abundances are within the range of 0.73-150 μg/g, showing some strong correlation between U enrichment and related elements such as Ti, V, Zr, Mo, and Au. In addition, Th abundance is correlated with ΣREE.
文摘IEA-R1 nuclear reactor operation has the routine to control uranium content in pool water to be in trace range below 50 μg/L. There are several routes to determine the uranium trace content in water in the literature;voltammetry has been systematically employed. In the present study, the chosen chemical determination of uranium traces used the voltammetric method known as AdCSV (adsorptive cathodic stripping voltammetry). This technique, based on mercury voltammetry, is an adequate methodology to determine uranium traces. The chloranilic acid [CAA] (2,5-dichloro-3,6-dihydroxy-1,4-benzo-quinone) is indicated as chelating agent. The redox reaction of UO2+2?with CAA is sensitive in the range of 2 2(CAA)2] reduction potential. In this work, we present the uranium trace results for IEA-R1 reactor water, sampled after an operation routine shutdown. The uranium trace determination for IEA-R1 pool water showed content around 1 μg/L [U] with statistical significance. Therefore the IEA-R1-reactor-water purification showed to be adequate and safe.
文摘This paper summarizes the results of the coprecipitation of ultramicrogram uranium with Fe(OH)<sub>3</sub> from saturated NaCl solution and separation of uranium from Fe(Ⅲ) by solvent extraction with TBP as extractant. In the first step, the coprecipitation efficiency of uranium is more than 95%; in the second step, extraction percentage of uranium is more than 98%, and stripping efficiency of uranium is nearly 100% (twice stripping) and separation factor (separation of Fe(Ⅲ) from uranium) is more than 10<sup>3</sup>.