最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率...最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率变化趋势,对远离最大功率点,采用大步长逼近;靠近最大功率点,采用小步长逼近。建立太阳能光伏电池数学模型得到其输出特性曲线,再利用MATLAB/Simulink搭建基于Boost电路的MPPT仿真模型,最后经仿真验证了所提出算法的稳定性、快速性和准确性,它比传统算法具有更好的MPPT暂态性能。展开更多
光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该...光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。展开更多
对于环境中存在的各种类型能量源,其往往具有不同的阻抗特性以及输出功率范围。为了提高能量收集系统的能量萃取能力,合理的接口电路设计是关键。基于此,通过对环境中光伏(Photovoltaic,PV)能量源微弱直流特性以及高效率收集和转化的研...对于环境中存在的各种类型能量源,其往往具有不同的阻抗特性以及输出功率范围。为了提高能量收集系统的能量萃取能力,合理的接口电路设计是关键。基于此,通过对环境中光伏(Photovoltaic,PV)能量源微弱直流特性以及高效率收集和转化的研究,在传统开路电压法(Open-Circuit Voltage,OCV)的基础上,结合输入电压纹波控制,提出了一种可实时最大功率点追踪(Maximum Power Point Tracking,MPPT)的预估算法。该预估算法根据能量源的输出特性,采用了分数开路电压法(Fractional Open-Circuit Voltage,FOCV),并根据纹波大小动态调节变换器的工作模式,实现阻抗匹配。为了尽可能减小因采样带来的能量损失,采用可片上全集成的较小的采样电容,并逐周期的进行开路电压采样和计算,实现了对源功率变化的高精度追踪。仿真结果表明,所提出的追踪算法能够实时监测能量源的状态,具有高的追踪速度和追踪精度,且采样时间仅需100 ns。能量源功率在1μW~10 mW范围内变化时,最短的追踪时间仅需4.37μs,追踪精度可达99.7%。展开更多
针对在局部阴影条件下,光伏阵列的功率-电压特性曲线呈现多个峰值,传统群体智能优化存在收敛速度慢、振荡幅度大和易陷入局部最优等问题,提出一种基于PSO-GWO(Particle Swarm Optimization-Grey Wolf Optimization)算法的MPPT(Maximum P...针对在局部阴影条件下,光伏阵列的功率-电压特性曲线呈现多个峰值,传统群体智能优化存在收敛速度慢、振荡幅度大和易陷入局部最优等问题,提出一种基于PSO-GWO(Particle Swarm Optimization-Grey Wolf Optimization)算法的MPPT(Maximum Power Point Tracking)控制方法。该算法引入余弦规律变化的收敛因子,平衡GWO算法的全局搜索与局部搜索能力;引入PSO算法,提高灰狼个体与自身经验之间的信息交流。仿真结果表明,提出的PSO-GWO算法在局部阴影条件下不仅能快速收敛,而且功率输出震荡幅度更小,有效提升了局部遮阴条件下光伏阵列的最大功率跟踪效率和精度。展开更多
为了解决传统光伏阵列最大功率点追踪(maximum power point tracking,MPPT)算法易陷入局部最大功率点(local maximum power point,LMPP)的问题,本文提出一种基于自适应位置调节的飞蛾扑火(adaptive position adjustment for moth-flame ...为了解决传统光伏阵列最大功率点追踪(maximum power point tracking,MPPT)算法易陷入局部最大功率点(local maximum power point,LMPP)的问题,本文提出一种基于自适应位置调节的飞蛾扑火(adaptive position adjustment for moth-flame optimization algorithm,AMFO)MPPT控制方法,该方法在飞蛾的位置更新机制中引入自适应位置插值策略和自适应权重因子策略,提高了算法的求解精度和优化速度,使之不易陷入局部最大功率点。将改进后的算法应用于光伏系统MPPT中,仿真实验结果表明:改进后的算法相较于传统的飞蛾扑火优化(moth-flame optimization,MFO)算法、灰狼优化(grey wolf optimizer,GWO)算法和粒子群优化(particle swarm optimization,PSO)算法,在均匀光照和局部遮阴条件下的追踪速率和精度均有较大提升。展开更多
文摘最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率变化趋势,对远离最大功率点,采用大步长逼近;靠近最大功率点,采用小步长逼近。建立太阳能光伏电池数学模型得到其输出特性曲线,再利用MATLAB/Simulink搭建基于Boost电路的MPPT仿真模型,最后经仿真验证了所提出算法的稳定性、快速性和准确性,它比传统算法具有更好的MPPT暂态性能。
文摘光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。
文摘对于环境中存在的各种类型能量源,其往往具有不同的阻抗特性以及输出功率范围。为了提高能量收集系统的能量萃取能力,合理的接口电路设计是关键。基于此,通过对环境中光伏(Photovoltaic,PV)能量源微弱直流特性以及高效率收集和转化的研究,在传统开路电压法(Open-Circuit Voltage,OCV)的基础上,结合输入电压纹波控制,提出了一种可实时最大功率点追踪(Maximum Power Point Tracking,MPPT)的预估算法。该预估算法根据能量源的输出特性,采用了分数开路电压法(Fractional Open-Circuit Voltage,FOCV),并根据纹波大小动态调节变换器的工作模式,实现阻抗匹配。为了尽可能减小因采样带来的能量损失,采用可片上全集成的较小的采样电容,并逐周期的进行开路电压采样和计算,实现了对源功率变化的高精度追踪。仿真结果表明,所提出的追踪算法能够实时监测能量源的状态,具有高的追踪速度和追踪精度,且采样时间仅需100 ns。能量源功率在1μW~10 mW范围内变化时,最短的追踪时间仅需4.37μs,追踪精度可达99.7%。
文摘针对在局部阴影条件下,光伏阵列的功率-电压特性曲线呈现多个峰值,传统群体智能优化存在收敛速度慢、振荡幅度大和易陷入局部最优等问题,提出一种基于PSO-GWO(Particle Swarm Optimization-Grey Wolf Optimization)算法的MPPT(Maximum Power Point Tracking)控制方法。该算法引入余弦规律变化的收敛因子,平衡GWO算法的全局搜索与局部搜索能力;引入PSO算法,提高灰狼个体与自身经验之间的信息交流。仿真结果表明,提出的PSO-GWO算法在局部阴影条件下不仅能快速收敛,而且功率输出震荡幅度更小,有效提升了局部遮阴条件下光伏阵列的最大功率跟踪效率和精度。
文摘为了解决传统光伏阵列最大功率点追踪(maximum power point tracking,MPPT)算法易陷入局部最大功率点(local maximum power point,LMPP)的问题,本文提出一种基于自适应位置调节的飞蛾扑火(adaptive position adjustment for moth-flame optimization algorithm,AMFO)MPPT控制方法,该方法在飞蛾的位置更新机制中引入自适应位置插值策略和自适应权重因子策略,提高了算法的求解精度和优化速度,使之不易陷入局部最大功率点。将改进后的算法应用于光伏系统MPPT中,仿真实验结果表明:改进后的算法相较于传统的飞蛾扑火优化(moth-flame optimization,MFO)算法、灰狼优化(grey wolf optimizer,GWO)算法和粒子群优化(particle swarm optimization,PSO)算法,在均匀光照和局部遮阴条件下的追踪速率和精度均有较大提升。