Tracking-Learning-Detection( TLD) is an adaptive tracking algorithm,which tracks by learning the appearance of the object as the video progresses and shows a good performance in long-term tracking task.But our experim...Tracking-Learning-Detection( TLD) is an adaptive tracking algorithm,which tracks by learning the appearance of the object as the video progresses and shows a good performance in long-term tracking task.But our experiments show that under some scenarios,such as non-uniform illumination changing,serious occlusion,or motion-blurred,it may fails to track the object. In this paper,to surmount some of these shortages,especially for the non-uniform illumination changing,and give full play to the performance of the tracking-learning-detection framework, we integrate the local binary pattern( LBP) with the cascade classifiers,and define a new classifier named ULBP( Uniform Local Binary Pattern) classifiers. When the object appearance has rich texture features,the ULBP classifier will work instead of the nearest neighbor classifier in TLD algorithm,and a recognition module is designed to choose the suitable classifier between the original nearest neighbor( NN) classifier and the ULBP classifier. To further decrease the computing load of the proposed tracking approach,Kalman filter is applied to predict the searching range of the tracking object.A comprehensive study has been conducted to confirm the effectiveness of the proposed algorithm (TLD _ULBP),and different multi-property datasets were used. The quantitative evaluations show a significant improvement over the original TLD,especially in various lighting case.展开更多
针对跟踪-学习-检测(Tracking-Learning-Detection,TLD)算法跟踪模块所用金字塔光流法计算量大,跟踪人脸实时性差的问题,提出融合连续自适应均值漂移(Continuously Adaptive Mean Shift,CamShift)的TLD算法提高人脸跟踪效率.改进的TLD...针对跟踪-学习-检测(Tracking-Learning-Detection,TLD)算法跟踪模块所用金字塔光流法计算量大,跟踪人脸实时性差的问题,提出融合连续自适应均值漂移(Continuously Adaptive Mean Shift,CamShift)的TLD算法提高人脸跟踪效率.改进的TLD算法框架中跟踪模块选用CamShift算法实现目标人脸跟踪,检测模块采用滑动窗法扫描搜索,再使用分类器判断目标是否存在,学习模块根据跟踪模块和检测模块的结果对比评估错误和误差,更新目标模型.将改进的TLD算法分别与CamShift算法和TLD算法进行对比试验,结果表明,融合CamShift的TLD算法实现人脸跟踪效率和准确率均高于原始两种算法,且满足实时性要求.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.61573057)the National Science and Technology Supporting Project(Grant No.2015BAF08B01)
文摘Tracking-Learning-Detection( TLD) is an adaptive tracking algorithm,which tracks by learning the appearance of the object as the video progresses and shows a good performance in long-term tracking task.But our experiments show that under some scenarios,such as non-uniform illumination changing,serious occlusion,or motion-blurred,it may fails to track the object. In this paper,to surmount some of these shortages,especially for the non-uniform illumination changing,and give full play to the performance of the tracking-learning-detection framework, we integrate the local binary pattern( LBP) with the cascade classifiers,and define a new classifier named ULBP( Uniform Local Binary Pattern) classifiers. When the object appearance has rich texture features,the ULBP classifier will work instead of the nearest neighbor classifier in TLD algorithm,and a recognition module is designed to choose the suitable classifier between the original nearest neighbor( NN) classifier and the ULBP classifier. To further decrease the computing load of the proposed tracking approach,Kalman filter is applied to predict the searching range of the tracking object.A comprehensive study has been conducted to confirm the effectiveness of the proposed algorithm (TLD _ULBP),and different multi-property datasets were used. The quantitative evaluations show a significant improvement over the original TLD,especially in various lighting case.
文摘针对跟踪-学习-检测(Tracking-Learning-Detection,TLD)算法跟踪模块所用金字塔光流法计算量大,跟踪人脸实时性差的问题,提出融合连续自适应均值漂移(Continuously Adaptive Mean Shift,CamShift)的TLD算法提高人脸跟踪效率.改进的TLD算法框架中跟踪模块选用CamShift算法实现目标人脸跟踪,检测模块采用滑动窗法扫描搜索,再使用分类器判断目标是否存在,学习模块根据跟踪模块和检测模块的结果对比评估错误和误差,更新目标模型.将改进的TLD算法分别与CamShift算法和TLD算法进行对比试验,结果表明,融合CamShift的TLD算法实现人脸跟踪效率和准确率均高于原始两种算法,且满足实时性要求.