The satellite constellation classes, which are suitable for the medium earth orbit tracking and data relay satellite system (MEO-TDRSS) of China, are investigated. On the basis of the functionality and the traffic d...The satellite constellation classes, which are suitable for the medium earth orbit tracking and data relay satellite system (MEO-TDRSS) of China, are investigated. On the basis of the functionality and the traffic distribution characteristic of MEO-TDRSS, the coverage performance and inter-satellite link properties of four different constellation schemes are compared by simulations. Simulation results indicate that the rosette and common-track constellations, whose satellites are distributed on the celestial sphere more uniformly, are appropriate for the implementation of MEO-TDRSS of China.展开更多
While adopting an elevation-over-azimuth architecture by an inter-satellite linkage antenna of a user satellite, a zenith pass problem always occurs when the antenna is tracing the tracking and data relay satellite (...While adopting an elevation-over-azimuth architecture by an inter-satellite linkage antenna of a user satellite, a zenith pass problem always occurs when the antenna is tracing the tracking and data relay satellite (TDRS). This paper deals with this problem by way of, firstly, introducing movement laws of the inter-satellite linkage to predict the movement of the user satellite antenna followed by analyzing the potential pass moment and the actual one of the zenith pass in detail. A number of specific orbit altitudes for the user satellite that can remove the blindness zone are obtained. Finally, on the base of the predicted results from the movement laws of the inter-satellite linkage, the zenith pass tracing strategies for the user satellite antenna are designed under the program guidance using a trajectory preprocessor. Simulations have confirmed the reasonability and feasibility of the strategies in dealing with the zenith pass problem.展开更多
为了在跟踪与数据中继卫星系统(TDRSS)中实现码分多址(CDMA)应用,需要完成多用户检测(MUD)及码分多址干扰(MAI)抑制。采用减性多级迭代对消算法,在数字信号处理芯片中完成信号再生、延时校正、时域相减对消,可以完成至少12通道的多用户...为了在跟踪与数据中继卫星系统(TDRSS)中实现码分多址(CDMA)应用,需要完成多用户检测(MUD)及码分多址干扰(MAI)抑制。采用减性多级迭代对消算法,在数字信号处理芯片中完成信号再生、延时校正、时域相减对消,可以完成至少12通道的多用户检测,并能将多址干扰抑制至最小1 d B以内。该算法可作为通用MUD算法的有效补充,并能应用于各类非最优的CDMA系统中,具有迭代级数可选、通道扩展性强、工程实现性好的优点。展开更多
以中继卫星(Racking and Data Relay Satellite,TDRS)为研究对象,以有色Petri网(Colored Petri Net,CPN)为数学工具,根据自顶向下的原则和层次化建模思想,提出一种基于CPN的TDRS操作规划模型,该模型分为顶层模型、控制模型、前向链路数...以中继卫星(Racking and Data Relay Satellite,TDRS)为研究对象,以有色Petri网(Colored Petri Net,CPN)为数学工具,根据自顶向下的原则和层次化建模思想,提出一种基于CPN的TDRS操作规划模型,该模型分为顶层模型、控制模型、前向链路数据接收任务与发送任务的操作规划模型和返向链路数据接收任务与发送任务的操作规划模型,有效地描述了TDRS的动态行为特性。最后,通过仿真实验得到了TDRS操作规划方案,验证了所建模型的有效性。与PDDL模型比较分析表明:所建模型可以有效引入TDRS的领域知识,能够有效提高求解效率。所建模型可以为TDRS操作规划方案的制定提供理论参考。展开更多
In this paper, feedforward attitude control law for a Tracking and Data Relay Satellite (TDRS) with mobile antennas is proposed. To track or point the target spacecraft with median/law orbit, the large mobile antenn...In this paper, feedforward attitude control law for a Tracking and Data Relay Satellite (TDRS) with mobile antennas is proposed. To track or point the target spacecraft with median/law orbit, the large mobile antennas have to move in a wide range. The movement of such mobile antennas disturbs the satellite attitude conscquently. Conventionally, the main body of thc satellitc and the mobile antennas are controlled independently. The proposed controller first estimates the angular momentum which the mobile antennas will produce based on tiLe momentum conservation equation. Next, it computes the desired velocity of reaction wheels to compensate the disturbance due to the antenna motion. It then adds the errnr of the wheels' velocity between a desired one and a current value as a feedforward signal to the control system. The proposed controller is demonstrated using a mathematical simulation, of which these results coincide well with analytical results.展开更多
基金the National Natural Science Foundation of China (60372013)
文摘The satellite constellation classes, which are suitable for the medium earth orbit tracking and data relay satellite system (MEO-TDRSS) of China, are investigated. On the basis of the functionality and the traffic distribution characteristic of MEO-TDRSS, the coverage performance and inter-satellite link properties of four different constellation schemes are compared by simulations. Simulation results indicate that the rosette and common-track constellations, whose satellites are distributed on the celestial sphere more uniformly, are appropriate for the implementation of MEO-TDRSS of China.
文摘While adopting an elevation-over-azimuth architecture by an inter-satellite linkage antenna of a user satellite, a zenith pass problem always occurs when the antenna is tracing the tracking and data relay satellite (TDRS). This paper deals with this problem by way of, firstly, introducing movement laws of the inter-satellite linkage to predict the movement of the user satellite antenna followed by analyzing the potential pass moment and the actual one of the zenith pass in detail. A number of specific orbit altitudes for the user satellite that can remove the blindness zone are obtained. Finally, on the base of the predicted results from the movement laws of the inter-satellite linkage, the zenith pass tracing strategies for the user satellite antenna are designed under the program guidance using a trajectory preprocessor. Simulations have confirmed the reasonability and feasibility of the strategies in dealing with the zenith pass problem.
文摘为了在跟踪与数据中继卫星系统(TDRSS)中实现码分多址(CDMA)应用,需要完成多用户检测(MUD)及码分多址干扰(MAI)抑制。采用减性多级迭代对消算法,在数字信号处理芯片中完成信号再生、延时校正、时域相减对消,可以完成至少12通道的多用户检测,并能将多址干扰抑制至最小1 d B以内。该算法可作为通用MUD算法的有效补充,并能应用于各类非最优的CDMA系统中,具有迭代级数可选、通道扩展性强、工程实现性好的优点。
文摘以中继卫星(Racking and Data Relay Satellite,TDRS)为研究对象,以有色Petri网(Colored Petri Net,CPN)为数学工具,根据自顶向下的原则和层次化建模思想,提出一种基于CPN的TDRS操作规划模型,该模型分为顶层模型、控制模型、前向链路数据接收任务与发送任务的操作规划模型和返向链路数据接收任务与发送任务的操作规划模型,有效地描述了TDRS的动态行为特性。最后,通过仿真实验得到了TDRS操作规划方案,验证了所建模型的有效性。与PDDL模型比较分析表明:所建模型可以有效引入TDRS的领域知识,能够有效提高求解效率。所建模型可以为TDRS操作规划方案的制定提供理论参考。
文摘In this paper, feedforward attitude control law for a Tracking and Data Relay Satellite (TDRS) with mobile antennas is proposed. To track or point the target spacecraft with median/law orbit, the large mobile antennas have to move in a wide range. The movement of such mobile antennas disturbs the satellite attitude conscquently. Conventionally, the main body of thc satellitc and the mobile antennas are controlled independently. The proposed controller first estimates the angular momentum which the mobile antennas will produce based on tiLe momentum conservation equation. Next, it computes the desired velocity of reaction wheels to compensate the disturbance due to the antenna motion. It then adds the errnr of the wheels' velocity between a desired one and a current value as a feedforward signal to the control system. The proposed controller is demonstrated using a mathematical simulation, of which these results coincide well with analytical results.