期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
Guaranteed Cost Attitude Tracking Control for Uncertain Quadrotor Unmanned Aerial Vehicle Under Safety Constraints
1
作者 Qian Ma Peng Jin Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1447-1457,共11页
In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system a... In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation. 展开更多
关键词 Attitude tracking control quadrotor unmanned aerial vehicle(QUAV) reinforcement learning safety constraints uncertain disturbances.
下载PDF
Practical Prescribed Time Tracking Control With Bounded Time-Varying Gain Under Non-Vanishing Uncertainties
2
作者 Dahui Luo Yujuan Wang Yongduan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期219-230,共12页
This paper investigates the prescribed-time control(PTC) problem for a class of strict-feedback systems subject to non-vanishing uncertainties. The coexistence of mismatched uncertainties and non-vanishing disturbance... This paper investigates the prescribed-time control(PTC) problem for a class of strict-feedback systems subject to non-vanishing uncertainties. The coexistence of mismatched uncertainties and non-vanishing disturbances makes PTC synthesis nontrivial. In this work, a control method that does not involve infinite time-varying gain is proposed, leading to a practical and global prescribed time tracking control solution for the strict-feedback systems, in spite of both the mismatched and nonvanishing uncertainties. Different from methods based on control switching to avoid the issue of infinite control gain that involves control discontinuity at the switching point, in our method a softening unit is exclusively included to ensure the continuity of the control action. Furthermore, in contrast to most existing prescribed-time control works where the control scheme is only valid on a finite time interval, in this work, the proposed control scheme is valid on the entire time interval. In addition, the prior information on the upper or lower bound of gi is not in need,enlarging the applicability of the proposed method. Both the theoretical analysis and numerical simulation confirm the effectiveness of the proposed control algorithm. 展开更多
关键词 Adaptive control prescribed time control(PTC) strict-feedback systems tracking control
下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach
3
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
Practical prescribed-time fuzzy tracking control for uncertain nonlinear systems with time-varying actuators faults
4
作者 Shuxing Xuan Hongjing Liang Tingwen Huang 《Journal of Automation and Intelligence》 2024年第1期40-49,共10页
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa... The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy. 展开更多
关键词 Prescribed-time tracking control Adaptive fuzzy control Actuator faults Uncertain nonlinear system
下载PDF
Tracking Control of Multi-Agent Systems Using a Networked Predictive PID Tracking Scheme 被引量:2
5
作者 Guo-Ping Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期216-225,共10页
With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper stu... With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example. 展开更多
关键词 Coordinative tracking control networked multiagent systems PID control predictive control
下载PDF
Observer-Based Path Tracking Controller Design for Autonomous Ground Vehicles With Input Saturation
6
作者 Heng Wang Tengfei Zhang +1 位作者 Xiaoyu Zhang Qing Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期749-761,共13页
This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking s... This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper. 展开更多
关键词 Autonomous ground vehicles(AGVs) H_∞index input saturation observer-based controller path tracking control
下载PDF
Disturbance Observer-Based Safe Tracking Control for Unmanned Helicopters With Partial State Constraints and Disturbances
7
作者 Haoxiang Ma Mou Chen Qingxian Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第11期2056-2069,共14页
In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown externa... In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown external disturbances. A safety protection algorithm is proposed to keep the constrained states within the given safe-set. A second-order disturbance observer technique is utilized to estimate the external disturbances. It is shown that the desired tracking performance of the controlled unmanned helicopter can be achieved with the application of the backstepping approach, dynamic surface control technique, and Lyapunov method. Finally, the availability of the proposed control scheme has been shown by simulation results. 展开更多
关键词 Disturbance observer dynamic surface control safe tracking control safety protection algorithm unmanned autonomous helicopter
下载PDF
Event-based performance guaranteed tracking control for constrained nonlinear system via adaptive dynamic programming method
8
作者 Xingyi Zhang Zijie Guo +1 位作者 Hongru Ren Hongyi Li 《Journal of Automation and Intelligence》 2023年第4期239-247,共9页
An optimal tracking control problem for a class of nonlinear systems with guaranteed performance and asymmetric input constraints is discussed in this paper.The control policy is implemented by adaptive dynamic progra... An optimal tracking control problem for a class of nonlinear systems with guaranteed performance and asymmetric input constraints is discussed in this paper.The control policy is implemented by adaptive dynamic programming(ADP)algorithm under two event-based triggering mechanisms.It is often challenging to design an optimal control law due to the system deviation caused by asymmetric input constraints.First,a prescribed performance control technique is employed to guarantee the tracking errors within predetermined boundaries.Subsequently,considering the asymmetric input constraints,a discounted non-quadratic cost function is introduced.Moreover,in order to reduce controller updates,an event-triggered control law is developed for ADP algorithm.After that,to further simplify the complexity of controller design,this work is extended to a self-triggered case for relaxing the need for continuous signal monitoring by hardware devices.By employing the Lyapunov method,the uniform ultimate boundedness of all signals is proved to be guaranteed.Finally,a simulation example on a mass–spring–damper system subject to asymmetric input constraints is provided to validate the effectiveness of the proposed control scheme. 展开更多
关键词 Adaptive dynamic programming(ADP) Asymmetric input constraints Prescribed performance control Event-triggered control Optimal tracking control
下载PDF
Optimal Tracking Controller Design for a Small Scale Helicopter 被引量:8
9
作者 Agus Budiyono Singgih S. Wibowo 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第4期271-280,共10页
A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused ... A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed. The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs. 展开更多
关键词 small scale helicopter optimal control tracking control rotorcraft-based UAV
下载PDF
Robust Tracking Control for Self-balancing Mobile Robots Using Disturbance Observer 被引量:8
10
作者 Mou Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期458-465,共8页
In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly desi... In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances. 展开更多
关键词 Disturbance observer robust tracking control self-balancing mobile robot sliding mode control(SMC)
下载PDF
Tracking Control for a Cushion Robot Based on Fuzzy Path Planning With Safe Angular Velocity 被引量:7
11
作者 Ping Sun Zhuang Yu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期610-619,共10页
This study proposes a new nonlinear tracking control method with safe angular velocity constraints for a cushion robot. A fuzzy path planning algorithm is investigated and a realtime desired motion path of obstacle av... This study proposes a new nonlinear tracking control method with safe angular velocity constraints for a cushion robot. A fuzzy path planning algorithm is investigated and a realtime desired motion path of obstacle avoidance is obtained. The angular velocity is constrained by the controller, so the planned path guarantees the safety of users. According to Lyapunov theory, the controller is designed to maintain stability in terms of solutions of linear matrix inequalities and the controller's performance with safe angular velocity constraints is derived.The simulation and experiment results confirm the effectiveness of the proposed method and verify that the angular velocity of the cushion robot provided safe motion with obstacle avoidance. 展开更多
关键词 Cushion robot path planning safe angular velocity tracking control
下载PDF
Adaptive Robust Motion Trajectory Tracking Control of Pneumatic Cylinders with LuGre Model-based Friction Compensation 被引量:5
12
作者 MENG Deyuan TAO Guoliang +1 位作者 LIU Hao ZHU Xiaocong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期802-815,共14页
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple c... Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller which can compensate the friction force in the cylinder. 展开更多
关键词 servo-pneumatic system tracking control sliding mode control adaptive control LuGre model
下载PDF
Local Path Planning and Tracking Control of Vehicle Collision Avoidance System 被引量:5
13
作者 Xu Zhijiang Zhao Wanzhong +1 位作者 Wang Chunyan Dai Yifan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期729-738,共10页
Automotive collision avoidance technology can effectively avoid the accidents caused by dangerous traffic conditions or driver's manipulation errors.Moreover,it can promote the development of autonomous driving fo... Automotive collision avoidance technology can effectively avoid the accidents caused by dangerous traffic conditions or driver's manipulation errors.Moreover,it can promote the development of autonomous driving for intelligent vehicle in intelligent transportation.We present a collision avoidance system,which is composed of an evasive trajectory planner and a path following controller.Considering the stability of the vehicle in the conflict-free process,the evasive trajectory planner is designed by polynomial parametric method and optimized by genetic algorithm.The path following controller is proposed to make the car drive along the designed path by controlling the vehicle's lateral movement.Simulation results show that the vehicle with the proposed controller has good stability in the collision process,and it can ensure the vehicle driving in accordance with the planned trajectory at different speeds.The research results can provide a certain basis for the research and development of automotive collision avoidance technology. 展开更多
关键词 VEHICLE collision avoidance dynamic model path planning tracking control
下载PDF
Discounted Iterative Adaptive Critic Designs With Novel Stability Analysis for Tracking Control 被引量:4
14
作者 Mingming Ha Ding Wang Derong Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1262-1272,共11页
The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of t... The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of time steps increases.In this paper,a new cost function is introduced to develop the value-iteration-based adaptive critic framework to solve the tracking control problem.Unlike the regulator problem,the iterative value function of tracking control problem cannot be regarded as a Lyapunov function.A novel stability analysis method is developed to guarantee that the tracking error converges to zero.The discounted iterative scheme under the new cost function for the special case of linear systems is elaborated.Finally,the tracking performance of the present scheme is demonstrated by numerical results and compared with those of the traditional approaches. 展开更多
关键词 Adaptive critic design adaptive dynamic programming(ADP) approximate dynamic programming discrete-time nonlinear systems reinforcement learning stability analysis tracking control value iteration(VI)
下载PDF
Robust adaptive tracking control of robotic systems with uncertainties 被引量:4
15
作者 Yaonan WANG Jinzhu PENG +2 位作者 Wei SUN Hongshan YU Hui ZHANG 《控制理论与应用(英文版)》 EI 2008年第3期281-286,共6页
To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee... To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance. 展开更多
关键词 Robust control Adaptive control Lyapunov stability Robotic tracking control
下载PDF
Approximate Optimal Tracking Control for Near-Surface AUVs with Wave Disturbances 被引量:3
16
作者 YANG Qing SU Hao TANG Gongyou 《Journal of Ocean University of China》 SCIE CAS 2016年第5期789-798,共10页
This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles(AUVs) in the presence of wave disturbances. An approximate optimal tracking control(AOTC) approach i... This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles(AUVs) in the presence of wave disturbances. An approximate optimal tracking control(AOTC) approach is proposed. Firstly, a six-degrees-of-freedom(six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value(TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit(REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 autonomous underwater vehicles wave disturbances optimal tracking control successive approximation approach
下载PDF
Statistic PID Tracking Control for Non-Gaussian Stochastic Systems Based on T-S Fuzzy Model 被引量:3
17
作者 Yang Yi Hong Shen Lei Gu 《International Journal of Automation and computing》 EI 2009年第1期81-87,共7页
A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model ident... A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach. 展开更多
关键词 Non-Gaussian systems probability density function statistic tracking control T-S fuzzy model proportional-integralderivative control.
下载PDF
Reference tracking control for flexible air-breathing hypersonic vehicle with actuator delay and uncertainty 被引量:3
18
作者 Hongyi Li Yiming Cheng Yulin Si Huijun Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期141-145,共5页
This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower a... This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower and upper bounds of the time-varying delay,the non-fragile controller is designed such that the resulting closed-loop system is asymptotically stable and satisfies a prescribed performance cost index.The simulation results are given to show the effectiveness of the proposed control method,which is validated by excellent output reference altitude and velocity tracking performance. 展开更多
关键词 actuator delay flexible air-breathing hypersonic flight vehicle(FAHFV) non-fragile control output tracking control.
下载PDF
H∞ Tracking Control for Switched LPV Systems With an Application to Aero-Engines 被引量:3
19
作者 Kongwei Zhu Jun Zhao Georgi M.Dimirovski 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第3期699-705,共7页
This paper focuses on the H_∞ model reference tracking control for a switched linear parameter-varying(LPV)model representing an aero-engine. The switched LPV aeroengine model is built based on a family of linearized... This paper focuses on the H_∞ model reference tracking control for a switched linear parameter-varying(LPV)model representing an aero-engine. The switched LPV aeroengine model is built based on a family of linearized models.Multiple parameter-dependent Lyapunov functions technique is used to design a tracking control law for the desirable H_∞ tracking performance. A control synthesis condition is formulated in terms of the solvability of a matrix optimization problem.Simulation result on the aero-engine model shows the feasibility and validity of the switching tracking control scheme. 展开更多
关键词 Aero-engine control H_∞ tracking control multiple parameter-dependent Lyapunov functions switched linear parameter-varying(LPV) systems
下载PDF
Command Filtered Finite/Fixed-time Heading Tracking Control of Surface Vehicles 被引量:2
20
作者 Zhenyu Gao Ge Guo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第10期1667-1676,共10页
This paper investigates the heading tracking problem of surface vehicles with unknown model parameters.Based on finite/fixed-time control theories and in the context of command filtered control,two novel adaptive cont... This paper investigates the heading tracking problem of surface vehicles with unknown model parameters.Based on finite/fixed-time control theories and in the context of command filtered control,two novel adaptive control laws are developed by which the vehicle can track the desired heading within settling time with all signals of the closed-loop system are uniformly bounded.The effectiveness and performance of the schemes are demonstrated by simulations and comparison studies. 展开更多
关键词 Command filter finite-time control fixed-time control heading tracking control surface vehicles
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部